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ABSTRACT

For mary practicalapplicationof speechrecognitionsystemsit is
quitedesirableto have anestimateof confidencdor eachhypoth-
esizedword. Unlike previous works on confidencemeasuresywe
have proposedeaturesfor confidenceneasureshatareextracted
from outputsof more than one LVCSR models. For further anal-
ysis of the proposedtonfidencemeasurethis paperexaminesthe
correlationbetweeneachword’s confidenceand the word's fea-
turessuchasits part-of-speeclandsyllablelength. We thenapply
SVM learningtechniqueo thetaskof combiningoutputsof multi-
ple LVCSRmodelswhere,asfeaturesof SVM learning,informa-
tion suchasthe pairsof themodelswhich outputthe hypothesized
word areusefulfor improving the word recognitionrate. Experi-
mentalresultsshov thatthe combinatiorresultsachieve arelative
word error reductionof up to 72 % againstthe bestperforming
singlemodelandthatof upto 36 % againstROVER.

1. INTRODUCTION

Sincecurrentspeechrecognizersbutputsarefar from perfectand
alwaysinclude a certainamountof recognitionerrors, it is quite
desirableto have anestimateof confidencefor eachhypothesized
word. This is especiallytrue for mary practical applicationsof
speectrecognitionsystemssuchasautomaticweighting of addi-
tional, non-speecltknowledgesourceskeyword basedspeechun-
derstandingandrecognitionerrorrejection— confirmationin spo-
kendialoguesystemsMost of previousworkson confidencenea-
sureqe.g.,[1] ) arebasednfeaturesavailablein asingleLVCSR
model. However, it is well known that a voting schemesuchas
ROVER (Recognizer output voting error reduction) for combin-
ing multiple speechrecognizers’outputscan achieve word error
reduction[2, 3, 4, 5]. Consideringthe succes®f a simplevoting
schemesuchasROVER, it alsoseemgquite possibleto improve
reliability of previously studiedfeaturesfor confidencemeasures
by simply exploiting morethanone speectrecognizersoutputs.
Fromthis obsenation,unlike thosepreviousworkson confidence
measuresye have beenstudyingfeaturedor confidenceneasures
that are extractedfrom outputsof more than one LVCSR mod-
els. More specifically we experimentallyevaluatecthe agreement
amongthe outputsof multiple Japanes€VCSR models,with re-
spectio whetherit is effective asanestimateof confidencdor each
hypothesizedvord [6, 7].

Our previous study [6] reportedthat the agreemenbetween
the outputswith two differentacousticmodelscan achieve quite
reliableconfidenceandalsoshavedthatthe proposedneasuref
confidenceoutperformsreviously studiedfeaturesor confidence
measuresuch as the acoustic stability and the hypothesis den-
sity [1]. We alsoreportedevaluationresultswith 26 distinctacous-
tic modelsandidentifiedthe featuresof acousticomodelsmostef-
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fective in achieving high confidencd7]. The mostremarkableae-
sultsareasfollows: for the newspapessentencaitterancesnearly
99% precisionis achieved by decreasin@4%word correctrateof
the bestperformingsingle modelby only 7%. For the broadcast
news speechnearly95%precisionis achiezed by decreasing@2%
word correctrateof the bestperformingsinglemodelby only 8%.

Basednthoseresultsof ourpreviousstudiesfor furtheranal-
ysisof the proposectonfidencemeasurethis paperexaminesthe
correlationbetweeneachword’s confidenceand the word's fea-
turessuchasits part-of-speectandsyllablelength. As theresult
of this analysis,to our surprise,we shav that functional words
suchas particlesand auxiliary verbstend to have higher confi-
dencevaluesthan contentwords suchas nounsand verbs. We
also shav that the confidenceof eachword varies accordingto
its syllablelength. Finally, we apply the SupportVectorMachine
(SVM) [8] learningtechniqueto the taskof combiningoutputsof
multiple LVCSR models. A SupportVector Machineis trained
for choosingthe mostconfidentone amongseveral hypothesized
words, where,asfeaturesof SVM learning,informationsuchas
the pairs of the modelswhich outputthe hypothesizedvord, its
part-of-speechandits syllablelengthareusefulfor improving the
wordrecognitionrate.

Model combinationby high performancemachinelearning
techniqguesuchasSVM learninghasadvantagesver thatby vot-
ing schemesuchas ROVER [2] and others[3, 4, 5], especially
whenthe majority of participatingmodelsarenot reliable. In the
modelcombinationtechniquesasedon voting schemesputputs
of multiple LVCSRmodelsarecombinedaccordingto simplema-
jority vote or weightedmajority vote basedon confidenceof each
hypothesizedvord suchasiits likelihood. The resultsof model
combinationby thosevoting techniquesanbe harmedwhenthe
majority of participatingmodelshave quite low performanceand
outputword recognitionerrorswith high confidence Ontheother
hand, in the model combinationby high performancemachine
learningtechniquesuchasSVM learning,amonghoseparticipat-
ing models,reliableonesand unreliableonesare easily discrimi-
natedthroughthetrainingproces®f machindearningframenork.
Furthermore,dependingon the featuresof hypothesizedvords
suchasits part-of-speectand syllable length, outputsof multi-
ple modelsarecombinedin anoptimalfashionsoasto minimize
word recognitionerrorsin thecombinatiorresults.

Experimentalresultsshav that model combinationby SVM
achieves the followings: i.e., for the newspapersentenceutter
ances,a relative word error reductionof 72 % againstthe best
performingsinglemodelandthatof 36 % againsROVER; for the
broadcasnhews speecha relative word error reductionof 39 %
againsthe bestperformingsinglemodelandthatof 14 % against
ROVER.



2. SPECIFICATION OF JAPANESE LVCSR SYSTEMS

2.1. Decoders

As the decodersof JapanesdVCSR systems,we usethe one
namedJulius, which is provided by IPA Japanesdlictationfree
softwareproject[9], aswell astheonenamedSPOJUS10], which
hasbeendevelopedn ourlaboratory Bothdecodersirecomposed
of two decodingpasseswherethefirst passusesheword bigram,
andthe secondhassusestheword trigram.

2.2. Acoustic Models

The acousticmodelsof Japanes¢&VCSR systemsare basedon
Gaussiammixture HMM. We evaluatephoneme-basedlMMs as
well assyllable-basetHMMs.

2.2.1. Acoustic Models with the Decoder JuLIus

As the acousticmodelsusedwith the decoderJulius, we evalu-
atephoneme-baseHMMs aswell assyllable-basedHMMs. The
following four typesof HMMs are evaluated:i) triphonemodel,
ii) phonetictied mixture (PTM) triphonemodel,iii) monophone
model, andiv) syllablemodel. Every HMM phonememodelis
genderdependen{male). For eachof the four modelsabove, we
evaluatebothHMMs with andwithout the shortpausestate which
amountto 8 acousticmodelsin total.

2.2.2. Acoustic Models with the Decoder SPOJUS
Theacousticmodelsusedwith the decodelSPOJUSarebasedn
syllableHMMs, which have beendevelopedn ourlaboratory{11].
The acousticmodelsare genderdependen (male) syllable unit
HMMs. Amongvariouscombination®f featuref acoustianod-
els', we carefully choose9 acousticmodelsso that they include
thebestperformingonesaswell asa sufiicient numberof minimal
pairswhich have differencein only onefeature.Then,for eachof
the 9 models we evaluateboth HMMs with andwithout the short
pausestateswhich amountto 18 acoustiamodelsin total.

2.3. Language Models

As thelanguagemodels the following two typesof word bigram/
trigramlanguagemodelsfor 20k vocahulary sizeareevaluated:1)
the onetrainedusing45 monthsMainichi newspaperarticles,2)
theonetrainedusing5 yearsJapanes&lHK (JaparBroadcasting
Corporationproadcashews scripts(about120,000sentences).

2.4. Evaluation Data Sets

Theevaluationdatasetsconsistof nevspapessentenceitterances,
whicharerelatively easieffor speechecognizersandratherharder
broadcashewsspeechl) 100newspapesentenceitterancefrom

10malespeakersonsistingof 1,565words,selectedy IPA Japanese

dictationfreesoftwareproject[9] from the INAS (JapanesBlews-
paperAtrticle Sentences3peechdata[12], 2) 175 Japanes&lHK
broadcasmnews (Junelst, 1996) speechsentencesonsistingof
6,813 words, utteredby 14 male speakergsix announcersand
eightreporters).

2.5. Word Recognition Rates

Word correctand accurag ratesof the individual LVCSR mod-
elsfor the above two evaluationdatasetsaremeasuredwherefor
therecognitionof the newspapesentencaitteranceshelanguage
modelusedis theonetrainedusingnewspapeiarticles,andfor the
recognitionof thebroadcashews speechthelanguagemodelused
is the onetrainedusingbroadcashews scripts. Word recognition
ratesfor the above two evaluationdatasetsaresummarizedshbe-
low:

1samplingfrequenciesframeshift lengths featureparameters;ovari-
ancematricesandselfloop transition/ durationcontrol.

| newspapeisentenceaitterances |

| decoder]| wordcorrect(%) | wordaccurag (%) |
Julius 93.9(max}o 73.8(min) | 91.3(max)to 70.3(min)
SPOJUS|| 91.1(max}o 79.5(min) | 86.2(max)}to 55.3(min)

| broadcashews speech |

| decoder]| wordcorrect(%) | wordaccurag (%) |
Julius 72.4(max)o 50.4(min) | 69.2(max)to 40.8(min)
SPOJUS|| 71.5(max}o 55.6(min) | 63.9(max)to 38.9(min)

3. AMETRIC FOR EVALUATING CONFIDENCE

This sectiongivesthe definitionof our metricfor evaluatingconfi-
dence.In this paper we focuson estimatingcorrectlyrecognized
wordsandevaluateconfidenceaccordingto recall/precisiorrates
of estimatingcorrectly recognizedwvords. The following givesa
procedurdor evaluatingthe agreemenamongthe outputsof mul-
tiple LVCSRmodelsasanestimateof correctlyrecognizedvords.
First, let us supposehatwe have two outputsHyp; and Hyp. of
two LVCSRmodels,eachof whichis representedsa sequencef
hypothesizedvords:

Hyp1 = Wily .« - -
Hyp2 = w213'--

s Wigy -« y Wik

s W25, .-+, W21

Hyp, and Hyp- arealignedby Dynamic Time Warping. Then,
a list namedagreed word list is constructedy collecting those
wordswi; (= we;) that satisfy the constraint: wy; and w2, are
alignedtogetherby DynamicTime Warping,andw1; andwz; are
lexically identical. Finally, thefollowing recall/precisionatesare
calculatedby comparingthe agreedword list with the reference
sentenceonsideringooththelexical form andthepositionof each
word.

# of correctwordsin theagreedwvord list

# of wordsin thereferencesentence
# of correctwordsin theagreedwvord list

# of wordsin theagreedword list

Recall

Precision =

4. CORRELATION BETWEEN WORD FEATURES AND
CONFIDENCE

As we reportedin [7], experimentingwith 26 (=8+18) distinct
Japanes&VCSR modelswith variousacousticmodels,we have
evaluated325 pairsof all the26 LVCSR modelsin termsof con-
fidenceof agreemenbetweenthe outputsof the two constituent
models.For further analysisof this confidencemeasurethis sec-
tion examinegshecorrelationbetweereachword’s confidenceand
theword’sfeaturessuchasits part-of-speeclandsyllablelength.
4.1. Parts-of-Speech of Words

First, in orderto examine the correlationbetweeneachword’s
confidenceandits part-of-speechthelanguagemodelsaretrained
with wordsannotatedvith their parts-of-speech Then,for each
of the nine part-of-speecltategyoriesof CHASEN, we evaluatethe
325LVCSRmodelpairsin termsof confidenceof agreemenbe-
tweentheoutputsof thetwo constituenmodels.More specifically
for eachof the 325 LVCSR model pairs, we evaluatethe preci-
sion/recallof the agreemenbetweentheir outputsand plot their
precisionvaluesin descendingrder For the newspapersentence

2parts-of-speecbf wordsareannotatedy the Japaneseorphological
analyzerCHASEN (http://chasen. ai st-nara. ac.j p/), where
thecoarseshine part-of-speecleategoriesreusedin this work.
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utterancesFigure 1 givesthis plot for eachof the mostfrequent
four parts-of-speechateyories,i.e., verb, noun, particle, andaux-
iliary verb, aswell asfor all the part-of-speeclatagoriestogether
in one plot (“Total”) (we have similar resultsfor the broadcast
news speechj.

Generallyspeakingo our surprise functionalwordssuchas
auxiliary verbsandparticlestendto have higherconfidencethan
contentwordssuchas verbsandnounsfor both speechdata,al-
thoughthereexist a few exceptionalcases. This tendeng coin-
cideswell with theperpleity distribution perpart-of-speeclgiven
in Figure3 (a). It is alsovery importantto notethat model pairs
achieving the highestprecisionvaluesvary accordingto the part-
of-speecltatgories.For thenewspapesentenceaitterancesmodel
pairswith the highestprecisionfor the part-of-speecttatgories
otherthanverbsachiese higherprecisionthanthetotal bestpreci-
sion. Estimatingfrom the distribution of Figure 1, it seemguite
possibleto overcomethetotal bestprecisionby switchingthemodel
pair to the one bestperformingagainstthe part-of-speectof the
word at currentposition.

4.2. Syllable Lengths of Words

Next, this sectionexaminesthe correlationbetweeneachword’s
confidenceandits syllablelength.For eachof the syllablelengths

3We excludethe modelpairswith recallvaluesbelav athreshold80%
for the newspapersentenceutterancesfrom the experimentaresultsin
Figuresl and2. Then, Figures1 and2 shav plots for the model pairs
within therangeof top 30 or 40.
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from 1 to 5, we evaluatethe 325 LVCSR model pairsin terms
of confidenceof agreemenbetweenthe outputsof the two con-
stituentmodels.For eachof the325LVCSRmodelpairs,we eval-
uatethe precision/recallof the agreemenbetweentheir outputs
andplot their precisionvaluesin descendingrder For the news-
papersentencaitteranceskigure 2 givesthis plot for eachof the
syllablelengthsfrom 1 to 5, aswell asfor all the syllablelengths
togetherin oneplot (“Total”).

Althoughthe perpleity distribution persyllablelengthgiven
in Figure 3 (b) shaws that the perpleity becomesmallerasthe
syllablelengthbecomeshorter Figure2 shavs thatthe tendeng
of confidencelistribution amongdifferentsyllablelengthsseems
rathercomplicated.(Thosetendenciesresomeha differentbe-
tweenthe newvspapersentenceaitterancesandthe broadcashevs
speech.)However, it is still true that model pairs achieving the
highestprecisionvaluesvary accordingto the syllable lengths.
Thus, again, it seemsquite possibleto overcomethe total best
precisionby switchingthe modelpair to the onebestperforming
againsthe syllablelengthof theword at currentposition.

5. COMBINING OUTPUTSOF MULTIPLE LVCSR
MODELSBY SVM

Basedntheanalysiof theprevioussection thissectiondescribes
theresultsof applyingSVM learningtechniqueo thetaskof com-
bining outputsof multiple LVCSR modelsconsideringthe confi-
denceof eachword'. We divide eachof the datasetsdescribed
in Section2.4 into two halves’, whereone half is usedfor train-
ing andthe other half for testing. A SupportVector Machineis
trained for choosingthe most confidentone amongseveral hy-
pothesizedwords from the outputsof the 26 LVCSR model$.
As featuresof the SVM learning, we usethe pairs of the mod-
elswhich outputtheword, the part-of-speeclof theword, andthe
syllablelengthof theword’. As classe®f the SVM learning,we
usewhethereachhypothesizedvord is corrector incorrect.Since

4We comparedhe performanceof SVM learningwith muchsimpler
machinéearningtechniquesuchasdecisionlist learning[13], andfound
thatSVM learningoutperformsdecisionlist learning.

51t is guaranteedhatthe two halvesdo not sharespeakers.

SWeusedSV MYght (htt p: // www. cs. cor nel | . edu/ Peopl e/
tj/svmli ght/)asatool for SVM learning.

"We alsoevaluatedthe effect of acousticandlanguagescoresof each
hypothesizediord asfeaturef SVM, wheretheir contritutionto improv-
ing the overallperformancavasverylittle.
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Fig. 4: Evaluation Resultsof Combining Outputsof Multiple
LVCSRModels

SupportVectorMachinesarebinary classifierswe regardthe dis-

tancefrom the separatinchyperplaneto eachhypothesizedvord

asthe word’s confidence.The outputsof the 26 LVCSR models
are alignedby Dynamic Time Warping, and the most confident
oneamongthosecompetinghypothesizedvordsis chosemasthe

resultof modelcombination We alsorequiretheconfidencef hy-

pothesizedvordsto be higherthana certainthreshold andchoose
the oneswith the confidenceaborve this thresholdasthe resultof

modelcombination.

Theresultsof the performancevaluationagainsthetestdata
areshawn in Figure 4 as“Model Combinationby SVM”, where
two or four resultsare given by changingthreshold=f the confi-
denceof eachhypothesizedvord. Furthermoreasbaselineper
formancesthat of the bestperformingsingle modelwith respect
to word correctrate (“Individual Model with Max Cor”), andthat
of themodelpairwith the highestprecisionvalue(“Pair with Max
Precision”)[6, 7] arealsoshavn. Therecall rate of modelcom-
binationby SVM is higherthanthat of the “Pair with Max Pre-
cision” whentheir precisionratesare comparatre. Furthermore,
for both speechdata, model combinationby SVM significantly
outperformsthe bestperformingsingle model. Relatve word er
ror reductionare 72 % for the newspapersentenceaitterancesand
39 % for the broadcashews speech(the bestcorrect (= recall)
rateachieved by modelcombinationby SVM was97.85% for the
newspapeisentenceitteranceand72.80% for thebroadcashews
speech).Figure4 also shaws the performanceof ROVER [2] as

anotherbaseline where“Majority Vote” shavs the performance
of the stratgy of outputting no word at a tie, while “Weighted
Majority Vote” shavs the performancevhentheword correctrate
of eachindividual modelis usedas the weight of hypothesized
words. As canbe seenfrom thoseresults,modelcombinationby
SVM mostly outperformsROVER for both speecldata. Relative
word errorratereductionare36 % for the newspapersentenceit-
terancesand14 % for the broadcashews speechFor the purpose
of further improving the performanceof model combinationby
machindearningsuchasSVM learning,we arecurrentlyworking
on incorporatingricher information (suchas the majority voting
resultsby ROVER, and acoustic/languagecoresof eachword)
into the machindearningframevork asfeatures.

6. CONCLUDING REMARKS

This paperstudiedfeaturesfor confidencemeasureghat are ex-
tractedfrom outputsof more than one LVCSR models. We ex-
aminedthe correlationbetweeneachword’s confidenceand the
word’s featuressuchasits part-of-speeclandsyllablelength. We
alsoshavedthat modelcombinationby SVM achieved a relative
word error reductionof up to 72 % againstthe bestperforming
singlemodelandthatof up to 36 % againsROVER.
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