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Abstract

This paperstudiesspeech-dkien Web retrieval modelswhich

acceptsspokensearchtopics (queries)in the NTCIR-3 Web
retrieval task. The major focus of this paperis on improving

speechrecognitionaccurag of spokenqueriesand thenim-

proving retrieval accurag in speech-dkien Web retrieval. We

experimentallyevaluatethetechnique®f combiningoutputsof

multiple LVCSR modelsin recognitionof spokenqueries.As

modelcombinationtechniquesye comparethe SVM learning
techniqueand corventional voting schemessuchas ROVER.

We shaw that the techniquesf multiple LVCSR modelcom-

bination can achieve improvementboth in speechrecognition
andretrieval accuraciesn speech-drientext retrieval. We also
shav that model combinationby SVM learning outperforms
corventionalvoting scheme$othin speechrecognitionandre-

trieval accuracies.

1. Intr oduction

Automatic speectrecognition,which decodesiumanvoice to
generatdranscriptionshasof late becomea practicaltechnol-
ogy. It is feasiblethat speechrecognitionis usedin realworld
computerbasedhpplicationsspecifically thoseassociatevith
humanlanguage.In fact, a numberof speech-basethethods
have beenexploredin theinformationretrieval (IR) community
In previousworkson spokerdocumentetrieval, writtenqueries
aremainly usedto searchspeecharchives for relevant speech
information. In previous works on speech-dxien retrieval, on
theotherhand,spokemqueriesareusedto retrieve relevanttex-
tual (or possiblyspeechjnformation. Initiated partially by the
TREC-6 spokendocumentretrieval (SDR) track [1], various
methodshave beenproposedfor spokendocumentretrieval.
However, a relatively small numberof techniqueshave been
exploredfor speech-drientext retrieval. Barnettet al. [2] per
formed comparatre experimentsrelatedto speech-dkien re-
trieval. Crestani[3] shaved that corventionalrelevancefeed-
backtechniquesnamginally improved the accurag for speech-
driven text retrieval. Thesetwo casesfocusedsolely on im-
proving text retrieval methodsanddid not addresgproblemsin
improving speechrecognitionaccurag.

Unlike thoseprevious approaches;ujii etal. [4] integrated
continuousspeechiecognitionandtext retrieval to improve both
recognitionand retrieval accuraciesn speech-drien text re-
trieval. Their methodusedtargetdocumentgo adaptlanguage
modelsand to recognizeout-of-vocalulary words for speech
recognition. Along with the NTCIR-3 [5] Web retrieval main
task, which wasorganizedto promotecornventionaltext-based
retrieval, they organizedthe “speech-drenretrieval” subtask.
Fujii etal. [4] produceda reusabletest collectionfor experi-
mentsof Webretrieval drivenby spokengueries.

For the purposeof furtherimproving speechrecognitionac-
curay of spokenqueriesandthenimproving retrieval accurag
in speech-drien text retrieval, this paperevaluatesthe tech-
niquesof combiningoutputsof multiple LVCSR models[6] in
recognitionof spokenqueriesof the NTCIR-3 speech-dxien
Webretrieval task. As model combinationtechniquesyve ex-
perimentallycomparehigh performancenachindearningtech-
niguessuchasSupportVectorMachine(SVM) learning[7] and
corventionalvoting schemesuchasROVER (Recognizer out-
put voting error reduction) [8, 9,10, 11].

Figure 1 illustratesthe overall framework of our speech-
driven text retrieval basedon multiple LVCSR model combi-
nation. Query utterancesare transcribedoy eachof multiple
LVCSR modelsindividually, and their outputsare combined
by the modelcombinationmodule. After excluding stopwords
from the outputsof model combinationmodule, the text re-
trieval module searchesa taiget IR collection for documents
relevantto the queries.As individual LVCSR models,we eval-
uatedeightmodelsthatdiffer in their decodersaswell astheir
acousticmodelswhile their languagenodelsarethesame We
borroved Fujii etal. [4] slanguagenodelandthetext retrieval
modulein the overall framevork of Figure 1, wherethe lan-
guagemodelwastrainedusingthetext of thetargetIR collec-
tion.
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Figure 1: Speech-drien Text Retrieval basedon Multiple
LVCSR Model Combination

In this paperwe reporttheresultsof our experimentakeval-
uationandshaw thatthe techniqueof multiple LVCSR model
combinationcan achieze improvementboth in speechrecog-
nition and retrieval accuraciesn speech-drien text retrieval.
We also shav that model combinationby SVM learningout-
performsconventionalvoting schemesuchasROVER bothin



speectrecognitionandretrieval accuracies.

2. Specificationof JapaneseLVCSR Models
2.1. Decoders

As the decoderof JapaneséVCSR systemswe usethe one
namedJulius,which s provided by IPA Japanesdictationfree
softwareproject[12], aswell asthe onenamedSPOJUYT13],
which hasbeendevelopedin ourlaboratory Both decodersare
composedf two decodingpasseswherethefirst passusesthe
word bigram,andthe seconchassusestheword trigram.

2.2. Acoustic Models

Theacousticmodelsof Japanes€VCSR systemsarebasedn
Gaussiamixture HMM. We evaluatephoneme-baseHMMs
aswell assyllable-basetHMMs.

2.2.1. Acoustic Models with the Decoder JuLIUS

As the acousticmodelsusedwith the decoderJulius, we eval-
uatephoneme-baseMMs aswell assyllable-basedHMMs.
The following four typesof HMMs are evaluated:i) triphone
model, ii) phonetictied mixture (PTM) triphone model, iii)

monophonanodel,andiv) syllablemodel. Every HMM model
is genderdependenfmale).

2.2.2. Acoustic Models with the Decoder SPOJUS

The acousticmodelsusedwith the decoderSPOJUSarebased
on syllable HMMs, which have beendevelopedin our labora-
tory [14]. The acousticmodelsare genderdependen(male)
syllableunit HMMs. We evaluatedfour typesof HMMs which
differin featureparameterand/orselflooptransition/ duration
control.

2.3. LanguageModel

The languagemodelis borroved from Fujii et al. [4], which
was trained using the text of the tamget IR collection. From
the 100GB collectionof taget Web text, 20,000high-frequent
words are independentlyused to produce word-basedtri-
gram model. The “ChaSen” (http://chasen. ai st -
nara. ac. j p) Japanesemorphological analyzer was em-
ployedto extract wordsfrom the 100GB Web text collection.
To resohe the datasparsenesproblem,a back-of smoothing
methodwas used,wherethe Witten-Bell discountingmethod
waschoserfor computingback-of coeficients.

3. Evaluation Data Sets

For the NTCIR-3 Web retrieval main task, 105 searchtopics
(queries)weremanuallyproducedfor eachof which relevance
assessmentasmanuallyperformedwith respecto two differ-
entdocumentsets,i.e,. the 10GB andthe 100GB collections.
In this paper we usedthe 100GBcollectiononly. The 100GB
collectionincludesapproximatelyl0,000,00@locuments.
Ten speakers(five adult males/females)were asked to
dictate the queries of the 105 searchtopics, which were
recordedas spoken queries of the NTCIR-3 speech-dxien
Web retrieval task. In this paper we usedspokenqueriesby
five male speakernly. The 105 spokenquerieswere then
divided into 52 queriesused for training of SVM models
for model combination,and the remaining53 queries. Out
of the remaining 53 queries, 47 queries (752 words and
329 keywords in total), each of which has referenceWeb
texts within the target 100GB collection, were used for

evaluating both speechrecognitionand retrieval accuracies.
Word correctandaccuray ratesof theindividual eightLVCSR
models averagedverthefive speakersaresummarizedbelow:

| decoder ||

wordcorrect(%) | wordaccurag (%) |

Julius 86.9(max)to 73.1(min) | 78.4(max)to 66.9(min)

SPOJUS|| 85.0(max)}o 81.8(min) | 76.5(max)to 75.0(min)

4. Combining Outputs of
Multiple LVCSR Models

4.1. Combination Methods

As techniquegor combiningoutputsof multiple LVCSR mod-
els,we experimentallycompareSVM learning[7] andcorven-
tional voting scheme®f ROVER [8, 9, 10, 11]. The52 queries
areusedfor trainingthe SYM modeld. A SupportVectorMa-
chineis trainedfor choosinghemostconfidentoneamongsev-
eral hypothesizedvordsfrom the outputsof the eight LVCSR
modelg. Asfeaturef theSVM learning,we usethelDs of the
modelswhich outputthe word, the part-of-speeclof the word,
andthe syllable lengthof theword®. As classef the SVM
learning,we usewhethereachhypothesizedvord is corrector
incorrect.SinceSupportVectorMachinesarebinaryclassifiers,
we regardthe distancefrom the separatindhyperplango each
hypothesizedvord astheword’s confidence The outputsof the
eight LVCSR modelsare alignedby Dynamic Time Warping,
and the most confidentone amongthosecompetinghypothe-
sizedwordsis chosenasthe resultof modelcombination.We
alsorequirethe confidenceof hypothesizedvordsto be higher
than a certainthreshold,and choosethe oneswith the confi-
denceabove this thresholdastheresultof modelcombination.

Wealsoevaluateavariantof theabo/e SVM model,namely
“SVM (redundant)’whereits trainingis exactly thesameasthe
abore SVM model, while in the phaseof model combination,
when choosingoutput words from thosecompetinghypothe-
sizedwords,SVM (redundantthooseshot only the mostcon-
fidentone,but alsoall the hypothesizedvordswith their confi-
dencevaluesover acertainthreshold SVM (redundantprefers
word correctratesto word accurag ratesby simply choosing
all thoseconfidenthypothesizedvordsthatarecompetingeach
other

4.2. Word Recognition Ratesof SpokenQueries

Figures2 and3 shaved word correct/accuracratesaswell as
keyword correct/accurac ratesof the 47 spokenqueries,re-
spectvely, where averagedover the five speakers.Word cor-
rect/accuragratesin Figure2 arethosefor thewholesentences
of the 47 spoken queries, while keyword correct/accurac
ratesin Figure 3 arethoseafter remarving stopwordsfrom the
speechrecognitionoutputs. Correct/accurac ratesindicated
as“Julius” and“SPOJUS"are the bestperformingresultsfor

1In this paper an SVM modelis trainedusingqueriesdictatedby a
singlespeakerandis evaluatedagainstestqueriedictatedby the same
speakemwho dictatedthe training queries. We are now evaluatingthe
performanceof crossspeaketSVM modelcombination,i.e., an SVM
modelfor modelcombinationis evaluatedagainsttestqueriesdictated
by a speakemho is not a speakenf thetrainingqueries.In our previ-
ouswork [6], SVM modelcombinationwasevaluatedin crossspeaker
modelcombinationandperformedquitewell.

2WeusedSV Mgkt (ht t p: / / www. ¢s. cor nel | . edu/ Peopl e/
tj/svmli ght/)asatool for SVM learning.

3We also evaluatedthe effect of acousticand languagescoresof
eachhypothesizedvord asfeaturesof SVM, wheretheir contritution
to improvingthe overallperformancevasvery little.



eachof the two decoders. As the recognitionratesfor the
cornventionalvoting schemeof ROVER, “WeightedMajority
Vote” shaws the performancewhen the word correctrate of
eachsentence is usedas the weight of hypothesizedwords,
where the word correctrate of eachsentenceare simply es-
timatedby linearly transformingits sentencescoreinto word
correctrate. “Majority Vote” shavs the performanceof the
stratgyy of outputtingno word at a tie in its voting scheme.
Finally, “All _or correct” shaws the performanceof taking the
unionof all the correctlyrecognizedvordsfrom the outputsof
the eight LVCSR modelswithout including ary of recognition
errorwords. Theseperformancef “All _or correct”’corresponds
to the upperboundsof the approachesf combiningoutputsof
multiple LVCSRmodels.

As can be clearly seenfrom theseresults,model combi-
nationtechniguesuchas SVM modelsand conventionalvot-
ing schemeschieved improvementin both word andkeyword
recognitionrates.Furthermoreroughly comparingSVM mod-
els(i.e., SVM andSVM (redundant)ith the corventionalvot-
ing schemesSVM modelsoutperformedhe voting schemes.
As we expected, SVM (redundant)improved word/keyword
correctrates while damagingts word/keyword accurag rates.
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Figure2: Word RecognitionRatesof SpokenQueries
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5. WebRetrieval
5.1. Text Retrieval Model

The text retrieval modelis alsoborrowved from Fuijii etal. [4].
It is basedon an existing probabilisticretrieval method[15],
which computesthe relevance score betweenthe translated
query and eachdocumentin the collection. The similarity
sim(Q, D;) betweena query @ anda documentD; is com-

putedasbelaw:

. TFt,
D) = (2 - log
sim(Q, Dy) ( DL, S TF OgDFt)

t avglen

Here,t is a keyword in queries.T'F; ; denoteghe frequeng
that keyword ¢ appearsn the documentD;. DF; denoteghe
numberof documentontainingkeywordt. N denotegheto-
tal numberof documentsn the collection. DL, denotesthe
lengthof thedocumentD; (i.e., thenumberof charactergon-
tainedin D;). avglen denoteghe averagdengthof documents
in thecollection.

Given transcribedkeywords sequencethe text retrieval
modulesearches tamet IR collectionfor relevant documents
andsortsthemaccordingto the similaritiessim(Q, D;) in de-
scendingorder The ChaSenJapanesenorphologicalanalyzer
wasemployedto extract wordsfrom the 100GB Web text col-
lection. After excluding stopwordsfrom the words sequence,
remainingwordsareusedasindex keywords.

5.2. Evaluation Measures

Relevanceassessmentias performedbasedon four ranks of
relevance,that is, highly relevant, relevant, partially relevant
andirrelevant. In addition,unlike conventionalretrieval tasks,
documentdyperlinkedfrom retrieved documentsvereoption-
ally usedfor relevanceassessmén To sumup, the following
four assessmerypeswereavailableto calculateaveragepreci-
sionvalues:

e RC: (highly) relevantdocumentsvereregardedascor
rectanswersandhyperlinkinformationwasNOT used,

e RL : (highly) relevantdocumentsvereregardedascor
rectanswersandhyperlinkinformationwasused,

e PC: partially relevantdocumentsverealsoregardedas
correctanswers,and hyperlink information was NOT
used,

e PL: partially relevantdocumentsverealsoregardedas
correctanswersandhyperlinkinformationwasused.

For eachof the above four relevanceassessmenypes,we in-
vestigatechon-interpolate@verageprecisionvalues.Here,we
usedthe47 queriedo retrieve 1,000top documentsindusecthe
TREC evaluationsoftwareto calculatenon-interpolatereci-
sionvalues. Finally, thoseaverageprecisionvaluesarefurther
averagedover thefive speakers.

5.3. Evaluation Results

Figure4 comparesNebretrieval performancéetweerindivid-
ual LVCSR modelsand modelcombinationmethods. Results
for Julius and SPOJUSare the bestperformingonesfor each
of the two decoders.Unexpectedly the bestperformancefor
SPOJUSIs over that for Julius, which is the oppositeto the
resultsof word/keyword recognitionrates. This is mainly be-
causeword/keyword recognitionratesdo not dependon the
keyword weights computedin the query/documensimilarity
sim(Q, D). It couldhapperthatkeywordswhicharecorrectly
recognizecby SPOJUSendto have greatemweightsthanthose
which are correctly recognizedby Julius. Web retrieval per
formanceof thevoting schemesreslightly betterthanthe best
performancdor Julius,but quitecloseto thatfor SPOJUSWeb
retrieval performancef the SVM models(i.e., SVM andSVM
(redundant) premostly significantlybetterthanthoseof thein-
dividual LVCSR modelsandthe voting schemes.Comparing



the SVM andthe SVM (redundant)the latter outperformsthe
former, indicatingthatit is betterto includeasmary correctly
recognizedckeywords as possible,evenif it damagekeyword
accuray rates. It is interestingto seethatthe improvementof
the SVM (redundantpver the SVM is greaterin “partially rel-
evant” (PC and PL) thanin “(highly) relevant” (RC and RL).
Sincethe queriesof the SVM (redundantfendto have more
recognitionerror keywordsthanthe SVM, it seemdifficult to
improve theperformancevhen(highly) relevantdocumentsre
requiredto beretrieved.
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Figure 4: Comparisonof Web Retrieval Performanceamong
Model CombinationMethods

Figure5 comparesVebretrieval performancédetweerspo-
ken queries(thoseindicatedas SVM (redundantjand “All _or
correct”) andtext queries(thoseindicatedas“Text"). Consid-
ering the fact that the keyword correctrate of “All _or correct”
is 81% in Figure3 andthatof “Text” is 100%, it is very sur
prising to seethe huge gapsof their retrieval performancen
Figure5. Thosehugegapsare mainly explainedby the diffi-
culty of theWebretrieval taskwith 100GBWebtext collection.
ThetamgetIR 100GBcollection(about10,000,000ocuments)
is huge,while the numberof documentselevantto a queryis
very small. Therefore remaing about20% of keywordsin a
querycauseseveredropsin theretrieval performance.
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Figure5: Comparisorof Web Retrieval Performancéetween
Spoken/®xt Queries

In orderto overcomethosehugegapsbetweer'All _or cor
rect” and“Text”, first of all, it is necessaryo improve the key-
word correctrateof “All _or correct”. In theexperimentakesults
reportedin this paper we only usedthe first besthypothesis
from eachof the individual LVCSR models,anddiscardedall
the otherhypothesesvith lessscores So, first, it maybe useful
to examine lessconfidenthypothesesandto explore whether
it is possibleto improve the keyword correctrate of “All _or

correct”. Next, for the purposeof selectiely outputtingkey-

wordsthatareusefulin text retrieval taskanddiscardingother
lessusefulwords, it shouldbe quite promisingto considerthe

keyword weights computedin the query/documensimilarity

sim(Q, D;) in the framewvork of LVCSR model combination
basedon SVM learning. We are nov working on formaliz-

ing SVM modeltraining sothatit canmeasurehe confidence
of keywords basednot only on their correct/accuracratesof

speectrecognition,but alsoon their usefulnessn the text re-

trieval task.

6. Conclusion

This paperevaluatedthe techniquesof combining outputsof

multiple LVCSR models[6] in recognitionof spokenqueries
of the NTCIR-3 speech-dkien Web retrieval task. The tech-
niguesof multiple LVCSR modelcombinationcanachieve im-

provementbothin speechrecognitionandretrieval accuraciefn

speech-drientext retrieval. Modelcombinatiorby SVM learn-
ing outperformedconventionalvoting schemesothin speech
recognitionandretrieval accuracies.
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