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Abstract

This paperstudiesspeech-driven Web retrieval modelswhich
acceptsspokensearchtopics (queries)in the NTCIR-3 Web
retrieval task. The major focusof this paperis on improving
speechrecognitionaccuracy of spokenqueriesand then im-
proving retrieval accuracy in speech-driven Webretrieval. We
experimentallyevaluatethetechniquesof combiningoutputsof
multiple LVCSR modelsin recognitionof spokenqueries.As
modelcombinationtechniques,we comparetheSVM learning
techniqueand conventionalvoting schemessuchas ROVER.
We show that the techniquesof multiple LVCSR modelcom-
binationcanachieve improvementboth in speechrecognition
andretrieval accuraciesin speech-driventext retrieval. We also
show that model combinationby SVM learningoutperforms
conventionalvotingschemesbothin speechrecognitionandre-
trieval accuracies.

1. Intr oduction
Automaticspeechrecognition,which decodeshumanvoice to
generatetranscriptions,hasof latebecomea practicaltechnol-
ogy. It is feasiblethatspeechrecognitionis usedin realworld
computer-basedapplications,specifically, thoseassociatedwith
humanlanguage.In fact, a numberof speech-basedmethods
havebeenexploredin theinformationretrieval (IR) community.
In previousworksonspokendocumentretrieval,writtenqueries
aremainly usedto searchspeecharchives for relevant speech
information. In previous works on speech-driven retrieval, on
theotherhand,spokenqueriesareusedto retrieve relevanttex-
tual (or possiblyspeech)information. Initiatedpartially by the
TREC-6 spokendocumentretrieval (SDR) track [1], various
methodshave beenproposedfor spokendocumentretrieval.
However, a relatively small numberof techniqueshave been
exploredfor speech-driventext retrieval. Barnettet al. [2] per-
formed comparative experimentsrelatedto speech-driven re-
trieval. Crestani[3] showed that conventionalrelevancefeed-
backtechniquesmarginally improved theaccuracy for speech-
driven text retrieval. Thesetwo casesfocusedsolely on im-
proving text retrieval methodsanddid not addressproblemsin
improving speechrecognitionaccuracy.

Unlike thosepreviousapproaches,Fujii etal. [4] integrated
continuousspeechrecognitionandtext retrieval to improveboth
recognitionand retrieval accuraciesin speech-driven text re-
trieval. Their methodusedtargetdocumentsto adaptlanguage
modelsand to recognizeout-of-vocabulary words for speech
recognition. Along with the NTCIR-3 [5] Web retrieval main
task,which wasorganizedto promoteconventionaltext-based
retrieval, they organizedthe “speech-driven retrieval” subtask.
Fujii et al. [4] produceda reusabletest collection for experi-
mentsof Webretrieval drivenby spokenqueries.

For thepurposeof furtherimproving speechrecognitionac-
curacy of spokenqueriesandthenimproving retrieval accuracy
in speech-driven text retrieval, this paperevaluatesthe tech-
niquesof combiningoutputsof multiple LVCSR models[6] in
recognitionof spokenqueriesof the NTCIR-3 speech-driven
Webretrieval task. As modelcombinationtechniques,we ex-
perimentallycomparehighperformancemachinelearningtech-
niquessuchasSupportVectorMachine(SVM) learning[7] and
conventionalvoting schemessuchasROVER (Recognizer out-
put voting error reduction ) [8, 9, 10,11].

Figure 1 illustratesthe overall framework of our speech-
driven text retrieval basedon multiple LVCSR model combi-
nation. Query utterancesare transcribedby eachof multiple
LVCSR modelsindividually, and their outputsare combined
by themodelcombinationmodule.After excluding stopwords
from the outputsof model combinationmodule, the text re-
trieval modulesearchesa target IR collection for documents
relevantto thequeries.As individual LVCSRmodels,we eval-
uatedeightmodelsthatdiffer in their decodersaswell astheir
acousticmodels,while their languagemodelsarethesame.We
borrowedFujii etal. [4]’s languagemodelandthetext retrieval
modulein the overall framework of Figure 1, wherethe lan-
guagemodelwastrainedusingthetext of the target IR collec-
tion.

Figure 1: Speech-driven Text Retrieval basedon Multiple
LVCSRModel Combination

In thispaper, wereporttheresultsof ourexperimentaleval-
uationandshow thatthetechniquesof multiple LVCSRmodel
combinationcan achieve improvementboth in speechrecog-
nition and retrieval accuraciesin speech-driven text retrieval.
We also show that modelcombinationby SVM learningout-
performsconventionalvoting schemessuchasROVER both in



speechrecognitionandretrieval accuracies.

2. Specificationof JapaneseLVCSR Models
2.1. Decoders

As the decodersof JapaneseLVCSR systems,we usethe one
namedJulius,which is providedby IPA Japanesedictationfree
softwareproject[12], aswell astheonenamedSPOJUS[13],
which hasbeendevelopedin our laboratory. Both decodersare
composedof two decodingpasses,wherethefirst passusesthe
wordbigram,andthesecondpassusestheword trigram.

2.2. Acoustic Models

Theacousticmodelsof JapaneseLVCSRsystemsarebasedon
Gaussianmixture HMM. We evaluatephoneme-basedHMMs
aswell assyllable-basedHMMs.

2.2.1. Acoustic Models with the Decoder JULIUS

As theacousticmodelsusedwith the decoderJulius,we eval-
uatephoneme-basedHMMs aswell assyllable-basedHMMs.
The following four typesof HMMs areevaluated:i) triphone
model, ii) phonetictied mixture (PTM) triphone model, iii)
monophonemodel,andiv) syllablemodel.Every HMM model
is gender-dependent(male).

2.2.2. Acoustic Models with the Decoder SPOJUS

Theacousticmodelsusedwith thedecoderSPOJUSarebased
on syllableHMMs, which have beendevelopedin our labora-
tory [14]. The acousticmodelsare gender-dependent (male)
syllableunit HMMs. We evaluatedfour typesof HMMs which
differ in featureparametersand/orself looptransition/ duration
control.

2.3. LanguageModel

The languagemodel is borrowed from Fujii et al. [4], which
was trainedusing the text of the target IR collection. From
the100GBcollectionof targetWeb text, 20,000high-frequent
words are independentlyused to produce word-basedtri-
gram model. The “ChaSen” (http://chasen.aist-
nara.ac.jp) Japanesemorphological analyzer was em-
ployedto extract wordsfrom the 100GBWeb text collection.
To resolve the datasparsenessproblem,a back-off smoothing
methodwas used,wherethe Witten-Bell discountingmethod
waschosenfor computingback-off coefficients.

3. Evaluation Data Sets
For the NTCIR-3 Web retrieval main task, 105 searchtopics
(queries)weremanuallyproduced,for eachof which relevance
assessmentwasmanuallyperformedwith respectto two differ-
ent documentsets,i.e,. the10GB andthe 100GBcollections.
In this paper, we usedthe100GBcollectiononly. The100GB
collectionincludesapproximately10,000,000documents.

Ten speakers(five adult males/females)were asked to
dictate the queries of the 105 search topics, which were
recordedas spoken queries of the NTCIR-3 speech-driven
Web retrieval task. In this paper, we usedspokenqueriesby
five male speakersonly. The 105 spokenquerieswere then
divided into 52 queries used for training of SVM models
for model combination,and the remaining53 queries. Out
of the remaining 53 queries, 47 queries (752 words and
329 keywords in total), each of which has referenceWeb
texts within the target 100GB collection, were used for

evaluating both speechrecognition and retrieval accuracies.
Wordcorrectandaccuracy ratesof theindividual eightLVCSR
models,averagedover thefivespeakers,aresummarizedbelow:
decoder wordcorrect(%) wordaccuracy (%)

Julius 86.9(max)to 73.1(min) 78.4(max)to 66.9(min)
SPOJUS 85.0(max)to 81.8(min) 76.5(max)to 75.0(min)

4. Combining Outputs of
Multiple LVCSR Models

4.1. Combination Methods

As techniquesfor combiningoutputsof multiple LVCSRmod-
els,we experimentallycompareSVM learning[7] andconven-
tional voting schemesof ROVER [8, 9, 10,11]. The52 queries
areusedfor trainingtheSVM models1. A SupportVectorMa-
chineis trainedfor choosingthemostconfidentoneamongsev-
eral hypothesizedwordsfrom theoutputsof theeightLVCSR
models2. As featuresof theSVM learning,weusetheIDs of the
modelswhich outputtheword, thepart-of-speechof theword,
and the syllable lengthof the word3. As classesof the SVM
learning,we usewhethereachhypothesizedword is corrector
incorrect.SinceSupportVectorMachinesarebinaryclassifiers,
we regardthedistancefrom the separatinghyperplaneto each
hypothesizedwordastheword’sconfidence.Theoutputsof the
eight LVCSR modelsarealignedby DynamicTime Warping,
and the mostconfidentoneamongthosecompetinghypothe-
sizedwordsis chosenasthe resultof modelcombination.We
alsorequiretheconfidenceof hypothesizedwordsto behigher
than a certainthreshold,and choosethe oneswith the confi-
denceabove this thresholdastheresultof modelcombination.

Wealsoevaluateavariantof theaboveSVM model,namely
“SVM (redundant)”,whereits trainingisexactly thesameasthe
above SVM model,while in the phaseof modelcombination,
when choosingoutput words from thosecompetinghypothe-
sizedwords,SVM (redundant)choosesnot only themostcon-
fidentone,but alsoall thehypothesizedwordswith their confi-
dencevaluesover acertainthreshold.SVM (redundant)prefers
word correctratesto word accuracy ratesby simply choosing
all thoseconfidenthypothesizedwordsthatarecompetingeach
other.

4.2. Word RecognitionRatesof SpokenQueries

Figures2 and3 showedword correct/accuracy ratesaswell as
keyword correct/accuracy ratesof the 47 spokenqueries,re-
spectively, whereaveragedover the five speakers.Word cor-
rect/accuracy ratesin Figure2 arethosefor thewholesentences
of the 47 spoken queries, while keyword correct/accuracy
ratesin Figure3 arethoseafter removing stopwordsfrom the
speechrecognitionoutputs. Correct/accuracy ratesindicated
as“Julius” and“SPOJUS”are the bestperformingresultsfor

1In this paper, anSVM modelis trainedusingqueriesdictatedby a
singlespeakerandis evaluatedagainsttestqueriesdictatedby thesame
speakerwho dictatedthe training queries.We arenow evaluatingthe
performanceof crossspeakerSVM modelcombination,i.e., an SVM
modelfor modelcombinationis evaluatedagainsttestqueriesdictated
by a speakerwho is not a speakerof thetrainingqueries.In our previ-
ouswork [6], SVM modelcombinationwasevaluatedin crossspeaker
modelcombinationandperformedquitewell.

2Weused���
	�� 
������ (http://www.cs.cornell.edu/People/
tj/svm light/) asa tool for SVM learning.

3We also evaluatedthe effect of acousticand languagescoresof
eachhypothesizedword asfeaturesof SVM, wheretheir contribution
to improvingtheoverallperformancewasvery little.



eachof the two decoders. As the recognitionratesfor the
conventionalvoting schemesof ROVER, “WeightedMajority
Vote” shows the performancewhen the word correct rate of
eachsentence is usedas the weight of hypothesizedwords,
where the word correct rate of eachsentenceare simply es-
timatedby linearly transformingits sentencescoreinto word
correct rate. “Majority Vote” shows the performanceof the
strategy of outputtingno word at a tie in its voting scheme.
Finally, “All or correct” shows the performanceof taking the
unionof all thecorrectlyrecognizedwordsfrom theoutputsof
theeightLVCSR modelswithout including any of recognition
errorwords.Theseperformanceof “All or correct”corresponds
to theupperboundsof theapproachesof combiningoutputsof
multiple LVCSRmodels.

As can be clearly seenfrom theseresults,model combi-
nationtechniquessuchasSVM modelsandconventionalvot-
ing schemesachieved improvementin both word andkeyword
recognitionrates.Furthermore,roughlycomparingSVM mod-
els(i.e.,SVM andSVM (redundant))with theconventionalvot-
ing schemes,SVM modelsoutperformedthe voting schemes.
As we expected,SVM (redundant)improved word/keyword
correctrates,while damagingits word/keywordaccuracy rates.

Figure2: Word RecognitionRatesof SpokenQueries

Figure3: KeywordRecognitionRatesof SpokenQueries

5. WebRetrieval
5.1. Text Retrieval Model

The text retrieval modelis alsoborrowed from Fujii et al. [4].
It is basedon an existing probabilisticretrieval method[15],
which computesthe relevance score betweenthe translated
query and eachdocumentin the collection. The similarity������������� 
! betweena query � and a document� 
 is com-

putedasbelow:

�����"�#���!� 
! %$'& �
� (*) ��+ 
,.-0/132 �4�65�798 (*) ��+ 

:

;=<?>A@� ) �  
Here, B is a keyword in queries. (*) �!+ 
 denotesthe frequency

that keyword B appearsin thedocument� 
 . � ) � denotesthe
numberof documentscontainingkeyword B . @ denotestheto-
tal numberof documentsin the collection. �DC 
 denotesthe
lengthof thedocument� 
 (i.e., thenumberof characterscon-
tainedin � 
 ). E0F >G;=HJI denotestheaveragelengthof documents
in thecollection.

Given transcribedkeywords sequence,the text retrieval
modulesearchesa target IR collectionfor relevant documents
andsortsthemaccordingto thesimilarities ���!�"�#�K��� 
! in de-
scendingorder. TheChaSenJapanesemorphologicalanalyzer
wasemployedto extract wordsfrom the100GBWeb text col-
lection. After excluding stopwordsfrom the wordssequence,
remainingwordsareusedasindex keywords.

5.2. Evaluation Measures

Relevanceassessmentwas performedbasedon four ranksof
relevance,that is, highly relevant, relevant, partially relevant
andirrelevant. In addition,unlike conventionalretrieval tasks,
documentshyperlinkedfrom retrieveddocumentswereoption-
ally usedfor relevanceassessment. To sumup, the following
four assessment typeswereavailableto calculateaveragepreci-
sionvalues:L RC : (highly) relevantdocumentswereregardedascor-

rectanswers,andhyperlinkinformationwasNOT used,L RL : (highly) relevantdocumentswereregardedascor-
rectanswers,andhyperlinkinformationwasused,L PC: partially relevantdocumentswerealsoregardedas
correct answers,and hyperlink information was NOT
used,L PL : partially relevant documentswerealsoregardedas
correctanswers,andhyperlinkinformationwasused.

For eachof theabove four relevanceassessmenttypes,we in-
vestigatednon-interpolatedaverageprecisionvalues.Here,we
usedthe47queriesto retrieve1,000topdocumentsandusedthe
TREC evaluationsoftwareto calculatenon-interpolatedpreci-
sionvalues.Finally, thoseaverageprecisionvaluesarefurther
averagedover thefive speakers.

5.3. Evaluation Results

Figure4 comparesWebretrieval performancebetweenindivid-
ual LVCSR modelsandmodelcombinationmethods.Results
for Julius andSPOJUSare the bestperformingonesfor each
of the two decoders.Unexpectedly, the bestperformancefor
SPOJUSis over that for Julius, which is the oppositeto the
resultsof word/keyword recognitionrates. This is mainly be-
causeword/keyword recognitionratesdo not dependon the
keyword weightscomputedin the query/documentsimilarity���!�"�#�K��� 
  . It couldhappenthatkeywordswhicharecorrectly
recognizedby SPOJUStendto have greaterweightsthanthose
which are correctly recognizedby Julius. Web retrieval per-
formanceof thevoting schemesareslightly betterthanthebest
performancefor Julius,but quitecloseto thatfor SPOJUS.Web
retrieval performanceof theSVM models(i.e.,SVM andSVM
(redundant))aremostlysignificantlybetterthanthoseof thein-
dividual LVCSR modelsand the voting schemes.Comparing



theSVM andtheSVM (redundant),the latteroutperformsthe
former, indicatingthat it is betterto includeasmany correctly
recognizedkeywordsaspossible,even if it damageskeyword
accuracy rates.It is interestingto seethat the improvementof
theSVM (redundant)over theSVM is greaterin “partially rel-
evant” (PC andPL) than in “(highly) relevant” (RC andRL).
Sincethe queriesof the SVM (redundant)tend to have more
recognitionerror keywordsthantheSVM, it seemsdifficult to
improve theperformancewhen(highly) relevantdocumentsare
requiredto beretrieved.

Figure 4: Comparisonof Web Retrieval Performanceamong
Model CombinationMethods

Figure5 comparesWebretrieval performancebetweenspo-
ken queries(thoseindicatedas SVM (redundant)and “All or
correct”)andtext queries(thoseindicatedas“Text”). Consid-
ering the fact that thekeyword correctrateof “All or correct”
is 81% in Figure3 and that of “Text” is 100%,it is very sur-
prising to seethe hugegapsof their retrieval performancein
Figure5. Thosehugegapsaremainly explainedby the diffi-
culty of theWebretrieval taskwith 100GBWebtext collection.
Thetarget IR 100GBcollection(about10,000,000documents)
is huge,while thenumberof documentsrelevant to a queryis
very small. Therefore,removing about20% of keywordsin a
querycausesseveredropsin theretrieval performance.

Figure5: Comparisonof WebRetrieval Performancebetween
Spoken/Text Queries

In orderto overcomethosehugegapsbetween“All or cor-
rect” and“Text”, first of all, it is necessaryto improve thekey-
wordcorrectrateof “All or correct”. In theexperimentalresults
reportedin this paper, we only usedthe first besthypothesis
from eachof the individual LVCSR models,anddiscardedall
theotherhypotheseswith lessscores.So,first, it maybeuseful
to examine lessconfidenthypothesesand to explore whether
it is possibleto improve the keyword correct rate of “All or

correct”. Next, for the purposeof selectively outputtingkey-
wordsthatareusefulin text retrieval taskanddiscardingother
lessusefulwords,it shouldbe quitepromisingto considerthe
keyword weightscomputedin the query/documentsimilarity���!�"�#�K��� 
  in the framework of LVCSR model combination
basedon SVM learning. We are now working on formaliz-
ing SVM modeltrainingso that it canmeasuretheconfidence
of keywordsbasednot only on their correct/accuracy ratesof
speechrecognition,but alsoon their usefulnessin the text re-
trieval task.

6. Conclusion
This paperevaluatedthe techniquesof combiningoutputsof
multiple LVCSR models[6] in recognitionof spokenqueries
of the NTCIR-3 speech-driven Web retrieval task. The tech-
niquesof multiple LVCSRmodelcombinationcanachieve im-
provementbothin speechrecognitionandretrieval accuraciesin
speech-driventext retrieval. Modelcombinationby SVM learn-
ing outperformedconventionalvoting schemesboth in speech
recognitionandretrieval accuracies.
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