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Improving Keyword Recognition of Spoken Queries by Combining
Multiple Speech Recognizer’s Outputs for Speech-driven WEB
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Masahiko MATSUSHITA†, Nonmember, Hiromitsu NISHIZAKI††a), Member,
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SUMMARY This paper presents speech-driven Web retrieval models
which accept spoken search topics (queries) in the NTCIR-3 Web retrieval
task. The major focus of this paper is on improving speech recognition ac-
curacy of spoken queries and then improving retrieval accuracy in speech-
driven Web retrieval. We experimentally evaluated the techniques of com-
bining outputs of multiple LVCSR models in recognition of spoken queries.
As model combination techniques, we compared the SVM learning tech-
nique with conventional voting schemes such as ROVER. In addition, for
investigating the effects on the retrieval performance in vocabulary size of
the language model, we prepared two kinds of language models: the one’s
vocabulary size was 20,000, the other’s one was 60,000. Then, we evalu-
ated the differences in the recognition rates of the spoken queries and the
retrieval performance. We showed that the techniques of multiple LVCSR
model combination could achieve improvement both in speech recognition
and retrieval accuracies in speech-driven text retrieval. Comparing with the
retrieval accuracies when an LM with a 20,000/60,000 vocabulary size is
used in an LVCSR system, we found that the larger the vocabulary size is,
the better the retrieval accuracy is.
key words: speech recognition, machine learning, multiple LVCSR models,
WEB retrieval

1. Introduction

Automatic speech recognition, which decodes the human
voice to generate transcriptions, has of late become a prac-
tical technology. Speech recognition can be used in real
world computer-based applications, specifically, those asso-
ciated with human language. In fact, a number of speech-
based methods have been explored in the information re-
trieval (IR) community. In previous works on spoken docu-
ment retrieval, type-inputted queries have been mainly used
to search speech archives for relevant speech information.
In previous works on speech-driven retrieval, on the other

Manuscript received July 7, 2004.
Manuscript revised September 16, 2004.
†The author is with the Denso Techno Corporation, Nagoya-

shi, 450–0002 Japan.
††The author is with the Interdisciplinary Graduate School of

Medicine and Engineering, University of Yamanashi, Kofu-shi,
400–8511 Japan.
†††The author is with the Graduate School of Informatics, Kyoto

University, Kyoto-shi, 606–8501 Japan.
††††The author is with the Department of Information and Com-

puter Sciences, Toyohashi University of Technology, Toyohashi-
shi, 440–8580 Japan.

a) E-mail: hnishi@yamanashi.ac.jp
b) E-mail: utsuro@pine.kuee.kyoto-u.ac.jp
c) E-mail: nakagawa@slp.ics.tut.ac.jp

DOI: 10.1093/ietisy/e88–d.3.472

hand, spoken queries have been used to retrieve relevant tex-
tual (or possibly speech) information. Initiated partially by
the TREC-6 spoken document retrieval (SDR) track [1], var-
ious methods have been proposed for spoken document re-
trieval. However, a relatively small number of techniques
have been explored for speech-driven text retrieval. Bar-
nett et al. [2] performed comparative experiments related to
speech-driven retrieval. Crestani [3] showed that conven-
tional relevance feedback techniques marginally improved
the accuracy for speech-driven text retrieval. These two
cases focused solely on improving text retrieval methods
and did not address problems in improving speech recog-
nition accuracy.

Along with the NTCIR-3 [4] Web retrieval main task,
which was organized to promote conventional text-based
retrieval, Fujii et al. [5] organized the “speech-driven re-
trieval” subtask. Unlike those previous approaches, they [5]
integrated continuous speech recognition and text retrieval
to improve both recognition and retrieval accuracies in
speech-driven text retrieval. Their method used target doc-
uments to adapt language models (LMs) and to recognize
out-of-vocabulary (OOV) words for speech recognition.

To further improve speech recognition accuracy of
spoken queries and then improving retrieval accuracy in
speech-driven text retrieval, this paper evaluates the tech-
niques of combining outputs of multiple LVCSR mod-
els∗ [6], [7] for recognition of spoken queries of the NTCIR-
3 speech-driven Web retrieval task. As model combination
techniques, we experimentally compare high-performance
machine learning techniques such as Support Vector Ma-
chine (SVM) learning [8] and conventional voting schemes
such as ROVER (Recognizer Output Voting Error Reduc-
tion) [9]–[12]. In addition, we use multiple LVCSR models
with an LM whose vocabulary size is 60,000, and compare
it with our previous experimental results in which we used
an LM with a 20,000 vocabulary size [13].

Figure 1 illustrates the overall framework of our
speech-driven text retrieval based on multiple LVCSR

∗In this paper, we define “an LVCSR model” as a set of a de-
coder, an language model, and an acoustic model which is trained
under various conditions such as triphone, syllable, and kinds of
feature. Thus, we regard an LVCSR model as one of various
LVCSR systems if decoders used among the LVCSR systems are
the same, but the type of acoustic model is different from others.

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Speech-driven text retrieval based on multiple LVCSR model
combination.

model combination. Query utterances are transcribed indi-
vidually by each of the multiple LVCSR models, and their
outputs are combined by the model combination module. A
keyword set for retrieving WEB documents is made by ex-
cluding stopwords† from the outputs of model combination
module. The text retrieval module searches a target IR col-
lection for documents relevant to the query using the key-
word set. Beside individual LVCSR models, we evaluated
eight models with different decoders and acoustic models,
but the same LMs. We used Fujii et al. [5]’s LM and the text
retrieval module in the overall framework of Fig. 1, where
the LM was trained using the text of the target IR collection.

In this paper, we report the results of our experimental
evaluation and show that the techniques of multiple LVCSR
model combination can achieve improvement both in speech
recognition and retrieval accuracies in speech-driven text re-
trieval. In addition, comparing with the retrieval accuracies
when an LM with a 20,000/60,000 vocabulary size is used in
an LVCSR system, we found that the larger the vocabulary
size is, the better the retrieval accuracy is.

2. Specification of Japanese LVCSR Models

2.1 Decoders

We use the so-called Julius (ver.3.3) decoder among the
Japanese LVCSR models. It is provided by the IPA
Japanese dictation free software project [14]. We also use
the one named SPOJUS, which was developed in our lab-
oratory [15], [16]. Both decoders are composed of two de-
coding passes, where the first pass uses the word bigram,
and the second pass uses the word trigram.

2.2 Acoustic Models

The acoustic models among the Japanese LVCSR mod-
els are based on a Gaussian mixture HMM. We evaluate

phoneme-based HMMs as well as syllable-based HMMs.
Speaker-independent acoustic models were trained by using
read speech (about 20,000 sentences uttered by 180 male
speakers; JNAS).

2.2.1 Acoustic Models with J Decoder

In the acoustic models used with the Julius decoder, we
evaluate phoneme-based HMMs as well as syllable-based
HMMs. The following four types of HMMs are evalu-
ated: i) triphone model, ii) phonetic tied mixture (PTM) tri-
phone model, iii) monophone model, and iv) syllable model.
Every HMM is gender-dependent (male). The feature pa-
rameters consist of 12 dimensional mel frequency cepstrum
coefficients (MFCC), delta 12 dimensions, and delta pow-
ers (henceforth “MFCC-frm”). The sampling frequency is
16 kHz, and the frame is shifted by 10 ms at every frame.

A typical triphone HMM consists of 5 states with 3
self-loops and 3 output distributions. Each distribution is
composed of 16 Gaussian mixtures having diagonal covari-
ance matrices. The total number of distributions is 2000.
On the other hand, a typical syllable-based HMM (124 syl-
lables) consists of 7 states with 5 self-loops and 5 output
distributions. Each distribution is composed of 16 Gaus-
sian mixtures having diagonal covariance matrices. The to-
tal number of distributions is 600.

2.2.2 Acoustic Models with SPOJUS Decoder

The acoustic models used with the SPOJUS are based on
syllable HMMs, which have been developed in our lab-
oratory [17]. The acoustic models are gender-dependent
(male) syllable unit HMMs (116 syllables). In our previ-
ous works [6], [7], we evaluated the combinations of multi-
ple LVCSR’s outputs by SVM and used 18 kinds of acous-
tic models for the SPOJUS. Considering the experimental
results described in [6], [7], we selected 4 types of HMMs
which differ in feature parameters and/or self loop transition
/ duration control [18], [19]. The following feature parame-
ters are used: 24 dimensional mel frequency cepstrum coef-
ficients segmented from 4 successive frames (dimensions re-
duction by K-L expansion), delta 12 dimensions calculated
over 9 successive frames, and delta delta 12 dimensions and
delta, delta delta powers (henceforth “MFCC-seg”); 12 di-
mensional mel frequency cepstrum coefficients, delta, delta
delta 12 dimensions, and delta, delta delta powers (MFCC-
frm). The sampling frequency is 16 kHz and the frame is
shifted by 10 ms at every frame.

Each syllable-based HMM consists of 5 states with 4
self-loops and 4 output distributions. Each distribution is
composed of 4 Gaussian mixtures having full covariance
matrices.

†Stopwords are function words (particle and auxiliary verb),
specific clauses which are used in some questions such as “知りた
い (I want to know)”and a hiragana character (for example “き”,
“ひ”).
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Fig. 2 Examples of the queries (words among parentheses denote key-
words).

2.3 Language Model

The LM was prepared by Fujii et al. [5], and trained using
the text of the target IR collection. From the 100 GB collec-
tion of the target Web text, 20,000/60,000 high-frequency
words are independently used to produce a word-based tri-
gram model. The “ChaSen”† Japanese morphological ana-
lyzer was employed to extract words from the 100 GB Web
text collection. To resolve the data sparseness problem, a
back-off smoothing method was used, where the Witten-Bell
discounting method was chosen for computing back-off co-
efficients.

3. Evaluation Data Sets

For the NTCIR-3 Web retrieval main task, 105 search topics
(queries) were manually produced, for each of which rele-
vance assessment was manually performed with respect to
two different document sets, i.e., the 10 GB and the 100 GB
collections. In this paper, we used only the 100 GB collec-
tion, which includes approximately 10,000,000 documents.

Ten speakers (five adult males/females) were asked
to utter the queries of the 105 search topics, which were
recorded as spoken queries of the NTCIR-3 speech-driven
Web retrieval task. In this paper, we used spoken queries
by five male speakers only. The 105 spoken queries were
then divided into 52 queries used for training SVM models
for model combination, and the remaining 53 queries. Out
of the remaining 53 queries, 47 queries (752 words and 329
keywords in total), each of which has reference Web texts
within the target 100 GB collection, were used for evaluat-
ing both speech recognition and retrieval accuracies. Fig-
ure 2 shows examples of the queries used in this paper.

Word correct and accuracy rates of the individual eight
LVCSR models, averaged over the five speakers, are sum-
marized in Table 1††. Recognition rates are improved by us-
ing the LM with the 60,000 vocabulary size comparing with
the one with a 20,000 vocabulary size. As shown in Table 2,
this is related with OOV rates for test queries. The larger the

Table 1 Recognition rates for 47 queries in each LVCSR model.

(a) Vocabulary size is 20,000.
LVCSR model Corr. Acc.

Julius monophone 73.2 66.9
triphone 86.9 78.4
PTM 85.8 77.5
syllable 84.3 77.8

SPOJUS MFCC-seg + duration 85.0 76.4
MFCC-frm + duration 84.3 76.5
MFCC-seg + selfloop 81.8 75.0
MFCC-frm + selfloop 81.8 75.2

(b) Vocabulary size is 60,000.
LVCSR model Corr. Acc.

Julius monophone 76.7 72.6
triphone 89.4 83.2
PTM 88.1 82.1
syllable 87.3 82.9

SPOJUS MFCC-seg + duration 87.4 82.1
MFCC-frm + duration 87.5 82.5
MFCC-seg + selfloop 87.0 82.7
MFCC-frm + selfloop 86.2 81.5

Table 2 OOV rates in difference of vocabulary size (20,000 and 60,000).

Voc. size OOV rate[%]

all words 20,000 4.5
60,000 1.0

keywords only 20,000 12.7
60,000 2.8

vocabulary size becomes from 20,000 to 60,000, the lower
the OOV rate becomes. Especially, the rate was improved
by 9.9% for only keywords included in the queries.

4. Combining Outputs of Multiple LVCSR Models

4.1 Combination Methods [7]

As techniques for combining outputs of multiple LVCSR
models, we experimentally compare SVM learning [8] and
conventional voting schemes of ROVER [9]–[12]. The 52
queries are used for training the SVM models†††. A Sup-
port Vector Machine is trained for choosing the most confi-
dent one among several hypothesized words from the out-
puts of the eight LVCSR models††††. As features of the

†http://chasen.aist-nara.ac.jp
††correct = 100−S −D and accuracy = 100−S −D− I, where

S ,D, I denote the rate of substitution, deletion and insertion error
rates, respectively.
†††We evaluate the performance of cross speaker SVM model

combination [6], i.e., we perform the speaker-open test in the
model combination (cross-validation). An SVM model is trained
using 52 queries dictated by four speakers that are not used in the
retrieval evaluation. The trained model is evaluated against 47 test
queries uttered by the remaining speaker who is not a speaker for
the training queries. We perform discretely the retrieval accuracy
for 47 test queries uttered by a single speaker. This procedure is
repeated for every speaker in turn (exchange a test speaker) and
then the obtained results are averaged over the retrieval accuracies
from the five speakers.
††††We used TinyS V M (http://chasen.aist-nara.ac.jp/
t̃aku/software/TinySVM/) as a tool for SVM learning.
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Fig. 3 An outline figure of applying SVM for outputs.

SVM learning, we use the ID of the model which output the
word, the part-of-speech of the word, and the word length
in syllables of the word†. For classes of the SVM learn-
ing, we use whether each hypothesized word is correct or
incorrect. Since Support Vector Machines are binary clas-
sifiers, we regard the distance from the separating hyper-
plane to each hypothesized word as the word’s confidence.
The outputs of the eight LVCSR models are aligned by Dy-
namic Time Warping, and the most confident one among
those competing hypothesized words is chosen as the result
of model combination. We also require the confidence of
hypothesized words to be higher than a certain threshold,
and choose those above this threshold as the result of model
combination. In Fig. 3, for example, only word “A” is out-
putted by SVM.

We also evaluate a variant of the above SVM model,
namely “SVM-redundant”, where its training is exactly the
same as the above SVM model, while in the model combina-
tion phase, when choosing output words from those compet-
ing hypothesized words, SVM-redundant chooses not only
the most confident one, but also all the hypothesized words
with their confidence values over a certain threshold. SVM-
redundant prefers word correct rates to word accuracy rates
by simply choosing all those confident hypothesized words
competing with each other. In Fig. 3, SVM outputs word
“A” and “B” on SVM-redundant.

4.2 Word Recognition Rates of Spoken Queries

Figures 4 and 5 show word correct/accuracy rates as well
as keyword correct/accuracy rates of the 47 spoken queries,
respectively, where they are averaged over the five speak-
ers. In the experiment using the LM in which vocabulary
size is 60,000, we do not perform the ROVER methods
as combining outputs from multiple LVCSR models. Be-
cause the SVM combination technique outperformed the
ROVER in word correct/accuracy. In addition, the ef-
fectiveness of the SVM combination has been shown in
our previous works [6], [7], [13] in which we compared
the SVM with the ROVER on various recognition tasks
such as newspaper reading utterances, and news anchor
speech. Word correct/accuracy rates in Fig. 4 are those for
the whole sentences of the 47 spoken queries, while key-

Fig. 4 Word recognition rates of spoken queries.

word correct/accuracy rates in Fig. 5 are those after remov-
ing stopwords from the speech recognition outputs. Cor-
rect/accuracy rates, indicated as “Julius” and “SPOJUS”, are
the best performing results for each of the two decoders.
The numbers in parentheses denote the vocabulary size of
the LM used in each LVCSR system.

As clearly seen from these results, the model combi-
nation technique such as SVM models serves to improve
both word and keyword recognition rates in cases of us-
ing both vocabulary sizes. Furthermore, roughly compar-
ing SVM models (i.e., SVM and SVM-redundant) with the
conventional voting schemes (i.e., ROVER), SVM models
outperform the voting schemes. As described in Sect. 3,
the OOV rate for the queries improves with the larger vo-
cabulary size, and consequently, both word and keyword
recognition rates improved with the 60,000 LM, compared
with the case with the 20,000 LM. Especially, the keyword
recognition rates significantly improved in all 5 transcribing
methods (Julius, SPOJUS, SVM, SVM-redundant). As we
expected, the SVM-redundant improves word/keyword cor-

†We also evaluated the effect of acoustic and language scores
of each hypothesized word as features of SVM, where their contri-
bution to improving the overall performance was very little.
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Fig. 5 Keyword recognition rates of spoken queries.

rect rates, while damaging its word/keyword accuracy rates.

5. Web Retrieval

5.1 Text Retrieval Model

The text retrieval model was also prepared by Fujii et al. [5].
It is based on an existing probabilistic retrieval method,
which computes the relevance score between the translated
query and each document in the collection. The similarity
sim(Q,Di) between a query Q and a document Di is com-
puted as below:

sim(Q,Di) =
∑

t


T Ft,i

DLi
avglen + T Ft,i

· log
N

DFt



Here, t is a keyword in queries. T Ft,i denotes the frequency
with which the keyword t appears in the document Di. DFt

denotes the number of documents containing keyword t. N
denotes the total number of documents in the collection.
DLi denotes the length of the document Di (i.e., the number
of characters contained in Di). avglen denotes the average
length of documents in the collection.

Given a transcribed keyword sequence, the text re-

trieval module searches for a target IR collection for rele-
vant documents and sorts them according to the similarities
sim(Q,Di) in descending order. The ChaSen Japanese mor-
phological analyzer was employed to extract words from
the 100 GB Web text collection. After excluding stopwords
from the word sequence, the remaining words are used as
index keywords.

5.2 Evaluation Measures

Relevance assessment is performed based on four ranks of
relevance, that is, highly relevant, relevant, partially rele-
vant and irrelevant. In addition, unlike conventional retrieval
tasks, documents hyperlinked from retrieved documents are
optionally used for relevance assessment. To sum up, the
following four assessment types are available to calculate
average precision values:

• RC : (highly) relevant documents were regarded as
correct answers, and hyperlink information was NOT
used,
• RL : (highly) relevant documents were regarded as cor-

rect answers, and hyperlink information was used,
• PC : partially relevant documents were also regarded as

correct answers, and hyperlink information was NOT
used,
• PL : partially relevant documents were also regarded as

correct answers, and hyperlink information was used.

For each of the above four relevance assessment types,
we investigate the non-interpolated average precision val-
ues [4]. Here, we use the 47 queries to retrieve 1,000 top
documents and use the TREC evaluation software to calcu-
late non-interpolated precision values. Finally, those aver-
age precision values are further averaged over the five speak-
ers.

5.3 Single LVCSR vs. Multiple LVCSR Models

Evaluation results of Web retrieval experiments are shown
in Fig. 6. First, comparing Web retrieval performance be-
tween individual LVCSR models and model combination
methods in both sizes of vocabulary of the LMs, results for
Julius and SPOJUS are the best performing ones for each
of the two decoders. Unexpectedly, the best performance
for SPOJUS exceeds that of Julius, which is opposite the re-
sults of word/keyword recognition rates. This is mainly be-
cause word/keyword recognition rates do not depend on the
keyword weights computed in the query/document similar-
ity sim(Q,Di). It could happen that keywords which are cor-
rectly recognized by SPOJUS tend to have greater weights
than those which are correctly recognized by Julius. The
Web retrieval performance of the voting scheme is slightly
better than the best performance for Julius, but quite close to
that for SPOJUS, while the performance of the SVM mod-
els (i.e., SVM and SVM-redundant) is mostly significantly
better than those of the individual LVCSR models. Com-
paring the SVM and the SVM-redundant, the latter outper-
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Fig. 6 Comparison of Web retrieval performance among model combi-
nation methods.

forms the former in Fig. 6 (a). However, the performances
of the SVM-redundant in case of using the 60,000 LM as
shown in Fig. 6 (b) are similar to those of the SVM, because
of the large number of keyword insertion errors (49.6%).
The threshold is decided experimentaly to get the best re-
trieval accuracy. The value is independent of a vocabulary
size as shown in Fig. 7. With the LM 20,000 vocabulary
size, insertion errors are fewer than at 60,000, and its rate
is 29.5%. Those results indicate that it is preferable to in-
clude as many correctly recognized keywords as possible,
even if it damages the keyword accuracy rate. However,
too many keyword insertions may further compromise the
retrieval accuracies. Interestingly, the improvement of the
SVM-redundant over the SVM is greater in “partially rele-
vant” (PC and PL) than in “(highly) relevant” (RC and RL).
Since the queries of the SVM-redundant tend to have more
keyword recognition errors than the SVM, it seems difficult
to improve the performance when (highly) relevant docu-
ments must be retrieved. However, this SVM-redundant’s
weak point, i.e., many insertion errors, may overcome by
weighting keywords included in a query. Thus, if only cor-
rectly recognized keywords among the large number of key-
word candidates are given more weight, the retrieval perfor-
mance may improve.

Figure 7 shows the retrieval performance (PC) when
the threshold for SVM-redundant is varied in some values.

Fig. 7 Variety of the retrieval performance (PC) when varying the thresh-
old of the SVM-redundant.

The threshold “null” shows the performance by outputting
all words located on the correct side of the hyperplane as
shown in Fig. 3. The larger the threshold is in negative, the
more hypothesized words are outputted, i.e., the keyword
recognition accuracy decreases. In both vocabulary sizes,
the maximum PC is obtained when the value of the thresh-
old is “−1.5”. Those results of PC (−1.5) are identical to
the ones in Fig. 6. As shown in Fig. 7, where the larger in-
sertion errors greatly compromise the performance despite
decreasing the number of missing keywords, what the un-
necessary keywords inserted into the query fatally damages
the retrieval accuracies.

5.4 20,000 vs. 60,000 in Vocabulary Size

Next, retrieval performance improved with the 60,000 LM,
compared with the case with the 20,000 LM in Fig. 6 (b).
This result is easily explained by the differences in the OOV
rates as seen in Table 2, where more keywords are covered
in the 60,000 LM. In addition, it is also explained by Fig. 8,
which shows the retrieval performances when the 22 queries
in which OOV keywords are not included are used. In other
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Fig. 8 Effects of OOV words in 20,000 vocabulary size. The numbers in
parentheses denote the number of queries.

words, the effect on the retrieval performance depends com-
pletely on only the recognition performances of the spo-
ken queries. Although we can not equally compare the 47
queries (including OOV keywords) with the 22 queries (not
including OOV keywords), we claim that the OOV key-
words adversely affect the retrieval performance rather than
degrading recognition performances of the keywords.

It is important for improving the Web retrieval perfor-
mance to transcribe correctly as many keywords as possi-
ble in spoken querie. Whereas comparing with the perfor-
mances of text queries (those indicated as “TEXT”), it is
surprising to see the gaps of their retrieval performance in
Fig. 6 (b). The gaps are mainly explained by the difficulty
of the Web retrieval task with 100 GB Web text collection.
The target of IR 100 GB collection (about 10,000,000 doc-
uments) is huge, while the number of documents relevant
to a query is very small. Moreover, keywords unrelated to a
query may lead to discovery of documents that are irrelevant
to the query. Therefore, missing about 15% of the necessary
keywords and adding about 50% (= 100 − 35 − 15[%] in
Fig. 5 (b)) of unnecessary keywords in a query vastly dimin-
ishes retrieval performance.

5.5 Comparison with the Previous Work

Finally, we compare our experimental results with those de-
scribed in [5], where Fujii et al. conducted an evaluation
of the same task. They [5] have experimented on the same
task described in this paper. The Julius decoder [14], the
60,000 LM, and the triphone-based acoustic model, as well
as the retrieval engine, which are used in [5], are the same
as the ones used in this paper. However, our experimental
results obtained using the Julius are different from their ear-
lier reported results in spite of using the same decoders and
the same retrieval engine. This is because we evaluate the
235 spoken sentences spoken by only five male speakers (47
queries × 5 males = 235), against the 470 spoken sentences
uttered by ten male/female speakers which were used in [5].

Figure 9 shows the comparison of our performance
with the ones in the previous work [5]. From comparing

Fig. 9 Comparison of our technique with the previous work.

Fig. 10 Comparison of error rates of word and keyword (term).

our best retrieval performances (i.e., “SVM-redundant” in
each vocabulary size) with [5]’s results in each evaluation
method, [5]’s results are better than ours from using the LM
with 20,000 vocabularies. This is explained by the fact that
the recognition performance for female speakers in [5] is
better than ours for only male speakers as shown in Fig. 10†.
Nevertheless from using the LM with 60,000 vocabularies,
we consider that our best result outperformed those of Fu-
jii et al. even through the recognition performance of fe-
male speakers is better than that for male speakers [14].
This is completely different from the results in the case of
20,000. However, the model combination by SVM greatly
contributes to the improvement of the retrieval accuracy by
enhancing the performance of each LVCSR model where
the larger size of vocabulary is used.

6. Conclusion

In the present study, the techniques of combining outputs
of multiple LVCSR models in recognition of spoken queries
were evaluated. The retrieval accuracies in the NTCIR-3

†In this figure, the recognition performance shows in
“WER”(word error rate, 100 - word accuracy [%]) and
“TER”(term error rate, 100 - keyword accuracy [%]). Those mea-
sures were used in [5].
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speech-driven Web retrieval task greatly depend on the vo-
cabulary size of the LMs used in the LVCSR models. The
techniques of multiple LVCSR model combination using the
SVM learning can improve both the speech recognition and
retrieval accuracies in speech-driven text retrieval. Espe-
cially, in terms of the retrieval accuracy, the LM with the
60,000 vocabulary size outperformed the one with 20,000
vocabulary size. In comparison of the SVM-redundant with
the simple SVM, the SVM-redundant technique, which out-
puts more correct keywords than the simple SVM, improved
the retrieval accuracies when the LM with 20,000 vocabu-
lary size were used. On the other hand, with 60,000 vocab-
ulary, the SVM-redundant’s performance was similar to that
of the simple SVM. Thus, we found it preferable to include
as many correctly recognized keywords as possible, even
if it adversely affects the keyword accuracy rate; too many
keyword insertions, however, may further compromise the
retrieval accuracies. Applying the SVM-redundant used in
this paper to the speech-driven web retrieval task must be ef-
fective in improving the retrieval performance, if a suitable
threshold can be found.

Hence, in the future works, we would like to introduce
a term (keyword) weighting schema, by which only cor-
rectly recognized keywords among the large number of key-
word candidates are given higher weight, for web retrieving.
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