
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.3 MARCH 2005
463

PAPER Special Section on Corpus-Based Speech Technologies

An Unsupervised Speaker Adaptation Method for
Lecture-Style Spontaneous Speech Recognition
Using Multiple Recognition Systems

Seiichi NAKAGAWA†a), Member, Tomohiro WATANABE†b), Nonmember, Hiromitsu NISHIZAKI††c), Member,
and Takehito UTSURO†††d), Nonmember

SUMMARY This paper describes an accurate unsupervised speaker
adaptation method for lecture style spontaneous speech recognition using
multiple LVCSR systems. In an unsupervised speaker adaptation frame-
work, the improvement of recognition performance by adapting acoustic
models remarkably depends on the accuracy of labels such as phonemes
and syllables. Therefore, extraction of the adaptation data guided by con-
fidence measure is effective for unsupervised adaptation. In this paper, we
looked for the high confidence portions based on the agreement between
two LVCSR systems, adapted acoustic models using the portions attached
with high accurate labels, and then improved the recognition accuracy. We
applied our method to the Corpus of Spontaneous Japanese (CSJ) and the
method improved the recognition rate by about 2.1% in comparison with a
traditional method.
key words: spontaneous speech recognition, unsupervised speaker adap-
tation, confidence measure, multiple LVCSR models

1. Introduction

Since current speech recognizers’ outputs are far from per-
fect and always include a certain amount of recognition er-
rors, it is quite desirable to have an estimate of confidence
for each hypothesized word. This is especially true for many
practical applications of speech recognition systems such as
keyword based speech understanding, and recognition error
rejection confirmation in spoken dialogue systems. Most of
previous works on confidence measure [1] are based on fea-
tures available in a single LVCSR system. We experimen-
tally evaluated the agreement among the outputs of multi-
ple Japanese LVCSR models∗, with respect to whether it
is effective as an estimate of confidence for each hypothe-
sized word [2]. Our previous study reported that the agree-
ment between the outputs with two different acoustic models
can achieve quite reliable confidence, and also showed that

Manuscript received July 1, 2004.
Manuscript revised September 28, 2004.
†The authors are with the Department of Information and Com-

puter Sciences, Toyohashi University of Technology, Toyohashi-
shi, 440–8580 Japan.
††The author is with the Interdisciplinary Graduate School of

Medicine and Engineering, University of Yamanashi, Kofu-shi,
400–8511 Japan.
†††The author is with the Graduate School of Informatics, Kyoto

University, Kyoto-shi, 606–8501 Japan.
a) E-mail: nakagawa@slp.ics.tut.ac.jp
b) E-mail: watanabe@cl.ics.tut.ac.jp
c) E-mail: hnishi@yamanashi.ac.jp
d) E-mail: utsuro@pine.kuee.kyoto-u.ac.jp

DOI: 10.1093/ietisy/e88–d.3.463

the proposed measure of confidence outperforms previously
studied features for confidence measure such as the acoustic
stability and the hypothesis density [1].

On the other hand, a speaker adaptation for acous-
tic models used in an LVCSR model, which is one of the
methods to improve recognition performance, has been re-
searched, and many adaptation techniques have been pro-
posed [3]–[5]. When utterances of speakers that are used
to adapt acoustic models can not be prepared in advance, an
unsupervised adaptation technique may be effective on clean
speech. We proposed an unsupervised speaker adaptation
method using speech recognition results for a context-free
grammar driven continuous speech recognition system and
showed the effectiveness [6]. On the other hand, we also
showed that an unsupervised speaker adaptation is not ef-
fective when syllable recognition rate is about 60–70%, in
other words, when a recognizer does not use any language
constraints. Therefore, unsupervised adaptation is very diffi-
cult with spontaneous speech such as lecture speech because
of the very lower recognition accuracy.

Zhang et al. [3] have proposed a clustering technique of
speakers and an unsupervised learning method of acoustic
models using the speaker clustering results for recognizing
news stories with many speaker turns in on-line processing
of recognition. In [3], the recognition performances of the
news stories ranged from 80% to 90% in word-based accu-
racy. Zhang et al. showed that the performance of unsuper-
vised adaptation of acoustic models using highly accurate
labels 90% or more in syllable-based accuracy, which was
obtained from recognition results using a trigram language
model, was almost equivalent to the recognition perfor-
mance of supervised adaptation. However, the performance
of spontaneous speech as the lecture-style ranges from 60%
to 70% in word-based recognition accuracy, which corre-
spond to about 70–80% in syllable-based recognition accu-
racy. Therefore, a traditional unsupervised speaker adapta-
tion method is not suitable under such a condition. An adap-
tation approach using words or word sequences transcribed

∗In this paper, we define “an LVCSR model” as a set of a de-
coder, a language model, and an acoustic model which is trained
under the various conditions such as triphone, syllable, kinds of
features. So we regard an LVCSR model as one of various LVCSR
systems if decoders used in among the LVCSR systems are same,
but the type of acoustic model is different from others.
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by an LVCSR model which consist of only high confidence
portions can be considered on the task of recognizing spon-
taneous speech.

Kemp et al. [4] proposed an unsupervised speaker
adaptation method similar to bagging based on a high con-
fidence score. Ogata et al. [5] proposed an unsupervised
speaker adaptation method by extracting reliable portions
based on a posterior probability. Yokoyama et al. [7] pro-
posed an unsupervised speaker adaptation method based
on unsupervisd batch-type topic adaptation for language
models and unsupervised adaptation of acoustic models.
However, there is still a gap on these methods between
unsupervised-driven results and supervised-driven results.
In [5], there was no difference between the recognition rates
for unsupervised adaptation methods using all transcribed
labels of training speech and using a part of transcribed la-
bels which had high confidence based on a posterior prob-
ability. We guess that the accuracy of the labels based on a
posterior probability described in [5] was low. Therefore, it
needs to use labels having the higher accuracy for unsuper-
vised adaptation to achieve more improvement of the recog-
nition performance. We have proposed the high confidence
measure described in [3], and it may be useful for unsuper-
vised adaptation methods.

This paper describes an accurate unsupervised speaker
adaptation method for lecture-style spontaneous speech
recognition. We earlier proposed the method of how to look
for the high confidence portions of transcriptions based on
the agreement between two LVCSR models. As the result of
a recognition experiment using acoustic models adapted by
only using the high confidence portions of lecture speech,
our unsupervised adaptation achieved the improvement of
2.1% in word-based accuracy in comparison with a tradi-
tional unsupervised adaptation method.

2. Specification of Japanese LVCSR Models

2.1 Decoders

We use the decoder named Julius Ver.3.3 among the
Japanese LVCSR models, which is provided by the IPA
Japanese dictation free software project [8], as well as the
one named SPOJUS, which has been developed in our labo-
ratory [9], [10]. Both decoders are composed of two decod-
ing passes, where the first pass uses the word bigram, and
the second pass uses the word trigram.

2.2 Acoustic Models

The acoustic models of Japanese LVCSR models are
based on Gaussian mixture HMM. We evaluate phoneme-
based HMMs as well as syllable-based HMMs. Speaker-
independent acoustic models were trained by using read
speech (about 20000 sentences uttered 180 male speakers;
JNAS) and read speech & lecture-style spontaneous speech
(115 lectures uttered by 115 male speakers; lecture speech).

2.2.1 Acoustic Models with the Decoder Julius

As the acoustic models used with the decoder Julius, we
evaluate phoneme-based HMMs as well as syllable-based
HMMs. The following two types of HMMs are evaluated:
i) triphone model, and ii) syllable model [11]. Every HMMs
are gender-dependent (male). The feature parameters con-
sist of 12 dimensional mel frequency cepstrum coefficients
(MFCC), delta 12 dimensionals, and delta powers (hence-
forth “MFCC-frm”). The sampling frequency is 16 kHz and
the frame is shifted by 10 ms at every frame.

A typical triphone HMM consists of 5 states with 3
self-loops and 3 output distributions. Each distribution is
composed of 16 Gaussian mixtures having diagonal covari-
ance matrices. The total number of distributions is 2000. On
the other hand, a typical syllable-based HMM consists of 7
states with 5 self-loops and 5 output distribution. Each dis-
tribution is composed of 16 Gaussian mixtures having diag-
onal covariance matrices. The total number of distributions
is 600.

2.2.2 Acoustic Models with the Decoder SPOJUS

The acoustic models used with the decoder SPOJUS are
based on syllable HMMs, which have been developed in our
laboratory [12]. The acoustic models are gender-dependent
(male) syllable unit HMMs. We evaluated five types of
HMMs which differ in feature parameters: In 16 kHz sam-
pling, 24 dimensional mel frequency cepstrum coefficients
(MFCC) segmented from 4 successive frames of 12 dimen-
sions (12 dim. × 4 frm. = 48 dim.) (lower dimensions
reduction by K-L expansion) delta 12 dimensions calcu-
lated over 9 successive frames, delta delta 12 dimensions
and delta, delta delta powers (henceforth “MFCC-seg”); 12
dimensional mel frequency cepstrum coefficients (MFCC),
delta, delta delta 12 dimensions, and delta, delta delta pow-
ers (henceforth “MFCC-frm”).

In 12 k sampling, 20 dimensional mel frequency cep-
strum coefficients segmented from 4 successive frames of
12 dimensions (12 dim. × 4 frm. = 40 dim.) (lower dimen-
sions reduction by K-L expansion), delta 10 dimensions cal-
culated over 9 successive frames, delta delta 10 dimensions
and delta, delta delta powers; The sampling frequency is
12 kHz or 16 kHz and the frame is shifted by 8 ms or 10 ms
at every frame.

Each syllable-based HMM consists of 5 states with 4
self-loops and 4 output distributions. Each distribution is
composed of 4 Gaussian mixtures having full covariance
matrices.

2.3 Language Models

The language model is used from the Corpus of Sponta-
neous Japanese (CSJ) Project [13], which was trained us-
ing a text made by correctly transcribing lecture speech.
From the training data which contain 612 lectures (1480834
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words), 20000 high-frequent words are independently used
to produce a word-based bigram/trigram model. The OOV
rate for the evaluation set is 9.7%.

2.4 Combinations of Decoder and Acoustic Model/Lan-
guage Model

Combinations of the following models are evaluated on the
experiment to extract high confidence portions from the
speech:

1. Decoder Julius (sampling frequency is 16 kHz, frame
shift length is 10 msec) and triphone-based acoustic
models,

2. Decoder Julius (16 kHz, 10 msec) and syllable-based
acoustic models [11],

3. Decoder SPOJUS (feature vector is MFCC-seg,
16 kHz, 10 msec) and syllable-based acoustic models,

4. Decoder SPOJUS (MFCC-frm, 16 kHz, 10 msec) and
syllable-based acoustic models,

5. Decoder SPOJUS (MFCC-seg, 16 kHz, 8 msec) and
syllable-based acoustic models,

6. Decoder SPOJUS (MFCC-frm, 16 kHz, 8 msec) and
syllable-based acoustic models, and

7. Decoder SPOJUS (MFCC-seg, 12 kHz, 8 msec) and
syllable-based acoustic models.

2.5 Extraction of High Confidence Portions [2]

This section gives the extraction method of high confidence
portions and the definition of our metric for evaluating con-
fidence. In principle, the task of estimating confidence for
each hypothesized word is to have an estimate of which
words of the outputs of LVCSR models are likely to be cor-
rect and which are not reliable. In this paper, however, we
focus on estimating correctly recognized words and eval-
uate confidence according to recall/precision rates of esti-
mating correctly recognized words. The following gives a
procedure for evaluating the agreement among the outputs
of multiple LVCSR models as an estimate of correctly rec-
ognized words. First, let us suppose that we have two out-
puts Hyp1 and Hyp2 of two LVCSR models, each of which
is represented as a sequence of hypothesized words. Next,
two sequences Hyp1 and Hyp2 of hypothesized words are
aligned by Dynamic Time Warping. Then, words that are
aligned together and have an identical lexical form are col-
lected into a list named agreed word list. Suppose that we
have two sequences Hyp1 and Hyp2 of hypothesized words
as below:

Hyp1 = w11, · · · ,w1i, · · · ,w1k

Hyp2 = w21, · · · ,w2 j, · · · ,w2l

Then, the agreed word list is constructed by collecting those
words w1i (= w2 j) that satisfy the constraint: w1i and w2 j

are aligned together by DP matching, and w1i and w2 j are
lexically identical. Figure 1 illustrates an example of above

Fig. 1 An example of agreement between two outputs.

procedure. The figure shows the case of outputs of the two
LVCSR models, and the term “bon” commonly outputted
from the two models is incorrect (substitution error). Fi-
nally, the following recall/precision rates are calculated by
comparing the agreed word list with the reference sentence
considering both the lexical form and the position of each
word.

Recall =
# of correct words in the agreed word list

# of words in the reference sentences

Precision =
# of correct words in the agreed word list

# of words in the agreed word list

In the case of Fig. 1, the recall and precision are 0.778
(= 7/9) and 0.875 (= 7/8) respectively.

3. Experimental Results for Speaker-Independent
LVCSR

3.1 Training/Evaluation Data Sets

A training data set for acoustic modeling constitutes 115
lectures from the CSJ uttered by 115 male speakers at the
meeting of the Acoustic Society of Japan (ASJ), because
the speech evaluated in this paper was only recorded at the
ASJ meetings, although the CSJ contains numerous lectures
recorded at various academic meetings.

Four lecture speech utterances at the meeting of the
Acoustic Society of Japan (ASJ) described as follows are
used as the evaluation set: a01m0035 (male speaker, 2610
words), a01m0007 (male speaker, 2341 words), a01m0074
(male speaker, 780 words), and a05m0031 (male speaker,
1604 words). Sentence boundary detection for spontaneous
speech such a lecture-style is a very difficult problem. In
this experiment, sentence boundaries are automatically de-
tected by the duration of pause. We use two kinds of pauses,
one is long pauses more than 400 ms and the other is short
pauses more than 200 ms. Table 1 summarizes the statistics
of segmented utterances. A short utterance segmented by
a threshold of 200 ms for pauses is composed of about 10
words on the average, on the other hand, a long utterances
about 31 words.
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3.2 Performance of Each LVCSR Model

Table 2 shows word-based recognition performances for
the whole lecture speech (i.e., sentences in “total” in Ta-
ble 1 were used). We evaluate two types of acoustic mod-
els, one trained using only lecture-style spontaneous speech
described in Sect. 3.1 (denoted by “lecture speech” in Ta-
ble 2), the other trained using read speech (180 persons,
about 20000 sentences) from the Japanese Newspaper Arti-
cle Sentences (JNAS) [14] (denoted by “JNAS” in Table 2).

By comparing Table 2 (a) and (b), we find that recogni-
tion of a long utterance is more difficult than that of a short
utterance. Segawa et al. [15] proposed a continuous speech
recognition method which does not need the explicit speech
end-point detection while avoiding recognition of long ut-
terances and showed the effectiveness in spoken dialog tran-
scription experiments. So we use utterances segmented by
the threshold of 200 ms hereafter. Using the acoustic models
trained from lecture speech achieves improvement of recog-
nition rates in comparison with the acoustic models by the
JNAS, but it is not enough. Therefore, it is necessary to

Table 1 Speech materials for evaluation.

(a) Number of long utterances segmented by long pause.

lecture ID adaptation test total

a01m0035 100 31 131
a01m0007 100 121 221
a01m0074 50 11 61
a05m0031 100 60 160

(b) Number of short utterances segmented by short pause.

lecture ID adaptation test total

a01m0035 300 273 573
a01m0007 300 352 652
a01m0074 150 69 219
a05m0031 300 117 417

Table 2 Comparison of the word-based recognition rate of an individual
LVCSR model (the average of all evaluation data) [%].

(a) Long utterances segmented by long pause.

training data JNAS lecture speech
model (acoustic model) Cor. Acc. Cor. Acc.

Julius (16 k, 10 ms, triphone) 52.7 43.2 64.3 55.9
Julius (16 k, 10 ms, syllable) 55.9 48.1 64.3 60.1
SPOJUS (16 k, 10 ms, seg) 55.7 50.1 60.7 53.5
SPOJUS (16 k, 10 ms, frm) 53.8 47.8 57.7 50.1
SPOJUS (16 k, 8 ms, seg) 45.6 38.8 62.4 54.1
SPOJUS (16 k, 8 ms, frm) 56.7 50.4 61.8 54.5
SPOJUS (12 k, 8 ms, seg) 57.7 51.4 62.3 55.3

(b) Short utterances segmented by short pause.

training data JNAS lecture speech
model (acoustic model) Cor. Acc. Cor. Acc.

Julius (16 k, 10 ms, triphone) 64.3 55.9 68.9 61.1
Julius (16 k, 10 ms, syllable) 64.3 60.1 64.7 60.6
SPOJUS (16 k, 10 ms, frm) 52.9 48.1 60.8 56.1
SPOJUS (16 k, 10 ms, seg) 38.6 34.5 62.4 57.4
SPOJUS (16 k, 8 ms, frm) 56.8 50.2 64.7 58.5
SPOJUS (16 k, 8 ms, seg) 60.5 53.9 66.3 59.8
SPOJUS (12 k, 8 ms, seg) 58.2 52.0 63.9 57.4

improve the recognition performances utilizing an unsuper-
vised adaptation technique of the acoustic model. However,
we can readily assume that the accuracy of the labels, which
are necessary for an adaptation, is much poorer because of
the low word accuracy as shown in Table 2. Thus, using
only the labels extracted from the high-confidence portions
of transcriptions of lecture speech may be very useful for
adapting acoustic models, because these labels may be re-
fined.

4. Evaluation of Unsupervised Speaker Adaptation Us-
ing High Confidence

In an unsupervised speaker adaptation framework, the im-
provement of recognition performance by the adaptation
remarkably depends on the accuracy of labels in syllable-
formed or phoneme-formed portions.

4.1 Data Set

In the experiments of the following Sect. 3.2, each lecture
speech described in Sect. 3.1 is divided into two sets, one for
adaptation for adapting acoustic models, the other for evalu-
ation of recognition performance. The training set contains
300 sentences in the first half of the lecture speech†, while
the remainder comprises the evaluation set (see Table 1 (b)).

(1) Adaptation data: the number of sentences used for
adaptation is also shown in Table 1 (b), i.e. a01m0035
(300 sentences, 3434 words), a01m0007 (300 sen-
tences, 1846 words), a01m0074 (150 sentences, 1668
words), and a05m0031 (300 sentences, 3566 words).

(2) Test data: the number of sentences used for evaluation
is summarized in Table 1 (b), i.e. a01m0035 (273 sen-
tences, 2610 words), a01m0007 (352 sentences, 2341
words), a01m0074 (69 sentences, 780 words), and
a05m0031 (117 sentences, 1605 words).

4.2 Agreement between Multiple LVCSR Models

Agreement between outputs of multiple LVCSR models is
defined as the agreement portions obtained by Dynamic
Time Warping between the different outputs of two LVCSR
models. Table 3 shows the performances of the agreement
between outputs of two LVCSR models. The baseline in
Table 3 indicates the result of the single LVCSR model (de-
coder Julius, sampling frequency is 16 kHz, frame shift of
10 msec, and acoustic model using triphone model) with the
highest recognition performance for transcribing test speech
among the single systems shown in Table 2.

Table 3 also summarizes following two results of the
model combinations with the highest precision rate among
10 combinations in different decoders or among 11 combi-
nations in the same decoder.

†However, the first 150 sentences are used for training only in
the lecture speech “a01m0074”, because of only 219 sentences in
total.
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Table 4 Word-based recognition rates of unsupervised adaptation (the average of four speakers). The
number of training (adaptation) and test sentences is shown in Table 1 [%].

adaptation method baseline unsupervised supervised
LVCSR models Cor. Acc. Cor. Acc. Cor. Acc.

Julius-triphone, 16 kHz-10 msec 67.4 60.5 68.6 62.5 69.2 62.6
Julius-syllable, 16 kHz-10 msec 61.7 58.1 63.9 60.6 64.3 61.0
SPOJUS, MFCC-frm-16 kHz-10 msec 57.2 52.7 58.7 54.5 65.2 61.2
SPOJUS, MFCC-seg-16 kHz-10 msec 59.8 54.8 62.9 57.6 67.4 62.1
SPOJUS, MFCC-frm-16 kHz-8 msec 61.7 55.8 65.2 59.3 69.3 63.8
SPOJUS, MFCC-seg-16 kHz-8 msec 64.0 58.0 67.5 60.6 70.5 64.4
SPOJUS, MFCC-seg-12 kHz-8 msec 60.9 54.7 64.2 57.3 67.8 61.9

Table 3 Performance of the recognition rates of the portions based on
the agreement between multiple LVCSR models (all evaluation data) [%].

Cor. = # of correct words
# of high confidence words ,

Acc. = # of correct words−# of insertion words
# of high confidence words ,

where Correct is equivlent to Precision

(a) Recognition rates. (word)

LVCSR models Cor. Acc.

baseline (Julius-triphone) 68.9 61.1
agreement (same decoder) 86.5 85.2
agreement (different decoder) 87.8 87.6

(b) Recognition rates. (syllable)

LVCSR models Cor. Acc.

baseline (Julius-triphone) 82.2 75.5
agreement (same decoder) 94.3 90.0
agreement (different decoder) 94.5 92.2

1. Combination of different decoders

• Decoder Julius (16 kHz, 10 msec) and triphone-
based acoustic models.
• Decoder SPOJUS (MFCC-seg, 16 kHz, 8 msec)

and syllable-based acoustic models.

2. Combinations of same decoder

• Decoder Julius (16 kHz, 10 msec) and triphone-
based acoustic models.
• Decoder Julius (16 kHz, 10 msec) and syllable-

based acoustic models.

As shown in Table 3, the agreement among outputs
of two LVCSR models has high confidence. The average
recognition rates are about 90% in syllables. The rates are
enough for unsupervised speaker adaptation as described in
Sect. 1.

To show the effectiveness of our confidence mea-
sure [2], we compare our confidence measure with the other
one. We extract words† with high confidence using Julius
Ver.3.4 which can calculate confidence measure for each
word based on a posterior probability [16]. The syllable-
based accuracy based on Julius is 87.4% in these portions.
This is worse than the accuracy (89.0%) based on our confi-
dence masure as shown in Table 5. Therefore, we can claim
that our confidence measure for unsupervised adaptation is
more effective than the typical measure based on a posterior
probability. In this work, these high confidence portions are

used for speaker adaptation.

4.3 Results of Unsupervised Adaptation Experiments

To investigate our proposed approach, first, we compare our
unsupervised adaptation approach which uses only the high
confidence portions of the recognized labels from lecture
speech with another approach using whole recognized labels
from lecture speech. Those two approaches to speaker adap-
tation use a MAP adaptation technique [17] (mean vector &
full covariance matrix) for the SPOJUS and an MLLR [3],
[5] (only mean vector) for the Julius††. Table 4 shows the
recognition performances when the speaker adaptation ap-
proach uses whole labels.

The performances for “baseline” indicate the results
for the speaker-independent acoustic models, just as in Ta-
ble 3. The rows of “unsupervised” and “supervised”, on
the other hand, denote the results of using adapted acoustic
models. In Table 4, the unsupervised adaptation approach
using whole labels slightly improves the recognition accu-
racy against the baseline. However, the unsupervised adap-
tation is no match for the supervised adaptation, especially,
for SPOJUS.

Next, in the experiments on speaker adaptation only us-
ing the portions based on the agreement between the outputs
of two LVCSR models, we select two combinations of the
LVCSR models; the one is a combination between the same
decoders, while the other is between different decoders.
We investigated syllable correct/accuracy rates of the tran-
scribed lecture speech as shown in Table 5. From the table,
we can find that syllable sequences of only high confidence
portions are refined, and its syllable-based correct and ac-
curacy achieve improvements of 11.4% and 10.7%, respec-
tively, in combinations between the same decoders. Fur-
thermore, the accuracy performance of syllable sequences
improves 2.2% or more in combinations between different
decoders compared with combinations of the same decoder.
In comparison with a posterior probability based confidence
measure by Julius Ver3.4 (denoted as “Julilus-syllable (pos-

†65% of all words were extracted. This is the same as the case
of our confidence measure.
††We performed the MAP adaptation method for the SPOJUS

and the global MLLR for the Julius. Those adaptation methods
have been used for each LVCSR system. Especially, our MAP
adaptation method can adapt the mean vectors and full covariance
matrices for every our syllable-based HMM.



468
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.3 MARCH 2005

Table 6 Experimental results of unsupervised adaptation in word-based recognition rates by the sin-
gle LVCSR model.

“high confidence adpt. (same)” = the agreement portion of Julius (Julius-triphone and Julius-syllable),
“high confidence adpt. (diff)” = the agreement portion of Julius (16 kHz-10 msec-tri) and SPOJUS
(MFCC-seg-16 kHz-8 msec) from the adaptation data described in Table 1 [%].

(a) Julius (triphone)

baseline unsupervised high confidence adpt (same) high confidence adpt (diff) supervised
speaker ID Cor. Acc. Cor. Acc. Cor. Acc. Cor. Acc. Cor. Acc.

a01m0035 62.1 53.1 63.1 55.0 62.8 54.2 63.0 54.0 63.5 55.0
a01m0007 71.8 64.3 72.5 64.5 72.4 64.7 72.8 65.4 72.6 64.8
a01m0074 78.5 73.3 77.6 73.7 77.8 74.4 78.0 73.9 78.5 74.5
a05m0031 62.1 53.1 61.4 57.1 61.2 56.6 61.4 57.3 62.1 56.9

average 67.4 60.5 68.6 62.5 68.6 62.5 68.8 62.7 69.2 62.8

(b) SPOJUS (MFCC-seg, 10 kHz, 8 ms).

baseline unsupervised high confidence adpt (diff) supervised
speaker ID Cor. Acc. Cor. Acc. Cor. Acc. Cor. Acc.

a01m0035 57.8 50.4 59.8 52.0 63.1 55.2 63.4 55.9
a01m0007 69.5 62.0 71.4 63.7 72.2 65.0 72.5 65.4
a01m0074 73.9 69.1 78.2 71.0 79.2 73.0 80.1 74.4
a05m0031 54.9 50.3 60.4 55.7 62.8 58.4 66.1 62.0

average 64.0 58.0 67.5 60.6 69.2 62.7 70.5 64.4

Table 5 Recognition rates of adaptation data for speaker adaptation
(syllables) [%].

LVCSR models Cor. Acc. Prec. Rec.

Julius-triphone (all portions) 82.9 76.1 — —
Julius-syllable (all portions) 78.3 74.2 — —
SPOJUS (all portions)† 80.4 74.5 — —

agreement (same) 94.3 86.8 94.3 73.0
agreement (different) 94.5 89.0 94.5 73.2

Julius-syllable (posterior prob.) 89.4 87.4 89.4 60.0

teriori prob.)”), in addition, our confidence measure remark-
ably outperforms it in the syllable-based recognition rates.

Table 6 shows the recognition rates for the unsuper-
vised adaptation approach using only high confidence por-
tions. Figure 2 illustrates the average recognition rates in
the table. In Table 6 and Fig. 2, the performance of “base-
line”, “unsupervised” and “supervised” are equivalent to Ta-
ble 4. It is surprising to find no significant difference be-
tween our proposed unsupervised adaptation and the super-
vised adaptation in recognition rate (especially, except for
the speaker a05m0031), and the acoustic models adapted by
our technique increase recognition performance to 62.7%
from 58.0% against the baseline models in word-based ac-
curacy for SPOJUS. We guess that this fact is caused by
high precision as shown in Table 5. The results clearly indi-
cate that our unsupervised adaptation technique, which uses
only the labels forming the high confidence portions, is very
effective for dictating spontaneous speech that is difficult to
correctly transcribe using an LVCSR model. In addition,
in spite of using two LVCSR systems in which the differ-
ent adaptation techiniques are used, the learning effective-
ness of the unsupervised adaptaion is nearly equal (except
for a05m0031) to the one of the supervised adaptation. This
proves the validity of our proposed technique.

(a) Julius.

(b) SPOJUS.

Fig. 2 Comparison of the adaptation methods.

5. Iteration of Unsupervised Adaptation

In the speaker adaptation experiment described in Sect. 4.3,
we supposed that acoustic models are adapted in on-line

†The condition of feature parameters used in SPOJUS is
“MFCC-seg-16 kHz-8 msec.”
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processing, so the lecture speech was divided into training
(adaptation) and test sets. This experiment aims at sequen-
tial adaptation of acoustic models. However, it is not neces-
sary to prepare a training data set for adapting acoustic mod-
els and we used a best combination between two LVCSR
models in off-line recognition processing.

Considering iteration in adapting acoustic models in
off-line processing, all lecture speech sentences can be rec-
ognized, where the lecture speech does not need to be split
into two data sets such as for training and test. So, in this
case, the test data is equivalent to training data for adapting
acoustic models. We look for the high confidence portions
of whole sentences, and can adapt acoustic models using the
reliable portions of the speech. Then, the sentences are rec-
ognized again by adapted acoustic models. The recognition
performances in accordance with iterating speaker adapta-
tion are shown in Table 7 and Fig. 3, in which the rates de-
scribed in Table 7 (e) are the same as the graphs. The row
of “baseline” corresponds to the results in Table 2 (b). The
row of “unsupervised” denotes the results by unsupervised
adaptation using whole of recognized labels. The number
of iterations is up to 4 times†. The results are from the
two LVCSR models: “Julius-triphone” and “SPOJUS-seg-
16 kHz-8 msec”. Adaptation methods are the MLLR for the
Julius, and the MAP for the SPOJUS. The results termed
“baseline” denote the performance for speaker-independent
acoustic models, while the results named “supervised” are
supervised adaptation in which the acoustic models are
adapted by the test data. The recognition accuracies im-
prove remarkably in the first iteration of adapting acoustic
models. Whenever the number of iteration increases after
the first adaptation, recognition accuracy rises slightly. As
to the precision and recall rates of the agreement portions,
the more the iteration number increases, the more the recall
rate improves even if the precision rate remains virtually the
same. We can consider this to be the improvement factor
in the 2nd iteration. Those results indicate that the unsuper-
vised speaker adaptation using the high confidence portions
based on the agreement between two LVCSR models is also
very effective in the iteration of speaker adaptation.

We should notice that there are still large differences
between results by our proposed speaker adaptation and su-
pervised adaptation, in spite of small differences in the case
of Table 6. This is caused by the reason of the usage of the
same data for adaptation and testing. In other words, acous-
tic models adapted by supervised learning is tuned for the
adapted data (same as test data in this case).

Surprisingly, the recognition rates by unsupervised
adaptation in Table 7 overperform the rates by supervised
adaptation in Table 4.

Table 8 summarizes the statisics of coverage of sylla-
bles in adaptation data. For example, the first row “0” in
“number of occurrences” denotes the number of syllables
which did not appear in adaptation data. About half of sylla-
bles appear in adaptation data more than 10 times. We guess
that more than 10 syllable samples are enough for roughly
speaker adaptation for the syllable. There is no big differ-

Table 7 Experimental results for iteratively adaptating AMs in word-
based recognition rates for unsupervised adaptation using only high cofi-
dence portion.

training data = test data (all data): combination of different decoders [%],
(J): Julius, (S): SPOJUS, (syl) = syllable.

(a) a01m0035.
adapt. methods Julius-tri SPOJUS-seg agreement (syl)
# of iteration Cor. Acc. Cor. Acc. Prec. Rec.

baseline 63.4 55.0 58.8 51.1 — —

unsupervised 63.5 55.1 59.8 52.0
79.9 76.7 (J)
77.9 72.4 (S)

1st iteration 63.6 55.3 64.8 57.2 93.4 65.5
2nd iteration 63.6 55.4 65.1 57.5 92.6 69.4
3rd iteration 63.7 55.4 65.5 57.7 92.9 70.1
4th iteration 63.7 55.5 65.6 57.9 92.9 70.0

supervised 63.9 56.4 73.9 68.8 100 100

(b) a01m0007.
adapt. methods Julius-tri SPOJUS-seg agreement (syl)
# of iteration Cor. Acc. Cor. Acc. Prec. Rec.

baseline 72.3 65.4 70.9 63.6 — —

unsupervised 73.0 65.9 71.1 63.5
85.9 86.3 (J)
85.2 84.4 (S)

1st iteration 73.5 66.7 74.6 68.4 95.1 79.2
2nd iteration 73.5 66.9 74.6 68.4 94.6 82.8
3rd iteration 73.6 66.9 74.6 68.4 94.4 82.7
4th iteration 73.6 66.9 74.6 68.5 94.4 82.7

supervised 73.8 67.2 81.3 77.2 100 100

(c) a01m0074.
adapt. methods Julius-tri SPOJUS-seg agreement (syl)
# of iteration Cor. Acc. Cor. Acc. Prec. Rec.

baseline 75.8 67.6 73.7 67.2 — —

unsupervised 76.1 67.8 74.4 67.9
85.1 87.5 (J)
84.7 84.8 (S)

1st iteration 77.5 69.7 79.0 72.1 94.9 79.8
2nd iteration 77.5 69.7 79.8 73.1 94.0 84.5
3rd iteration 77.5 69.8 80.4 73.6 94.0 85.1
4th iteration 77.5 69.8 80.6 73.8 94.0 84.9

supervised 77.7 70.0 85.2 80.2 100 100

(d) a05m0031.
adapt. methods Julius-tri SPOJUS-seg agreement (syl)
# of iteration Cor. Acc. Cor. Acc. Prec. Rec.

baseline 64.0 56.4 61.6 57.4 — —

unsupervised 66.3 58.2 62.8 58.3
80.5 78.3 (J)
80.1 75.0 (S)

1st iteration 67.1 60.6 68.7 65.1 93.7 67.3
2nd iteration 67.1 60.8 69.8 66.1 93.1 74.8
3rd iteration 67.2 60.8 70.6 66.8 93.3 75.4
4th iteration 67.2 60.9 70.7 67.0 93.3 75.4

supervised 67.4 61.2 78.8 76.1 100 100

(e) average.

adapt. methods Julius-tri SPOJUS-seg agreement (syl)
(# of iteration) Cor. Acc. Cor. Acc. Prec. Rec.

baseline 68.9 61.1 66.3 59.8 — —

unsupervised 69.7 61.8 67.0 60.4
82.9 82.2 (J)
82.0 79.2 (S)

1st iteration 70.4 63.1 71.8 65.7 94.3 73.0
2nd iteration 70.4 63.2 72.3 66.3 93.6 77.9
3rd iteration 70.5 63.2 72.8 66.6 93.7 78.3
4th iteration 70.5 63.3 72.9 66.8 93.7 78.3

supervised 70.7 63.8 79.8 75.6 100 100

†The performance converged in the iteration number 4, al-
though we tried to perform more numbers of iteration.
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Fig. 3 Performances by increasing the number of iteration of adaptation.

Table 8 Coverage of syllables for speaker adaptation (SPOJUS, MFCC-
seg-16 kHz-8 msec).

(a) All portions.

# of
occurrences a01m0035 a01m0007 a01m0074 a05m0031

0 30 32 33 28
1 4 6 5 9
2 3 2 1 4
3 4 3 5 0

4∼5 3 1 5 1
6∼10 11 5 13 9
11∼ 61 67 54 66

(b) High confidence portions.

# of
occurrences a01m0035 a01m0007 a01m0074 a05m0031

0 30 34 34 34
1 5 5 6 6
2 5 2 1 1
3 5 2 4 1

4∼5 7 3 4 2
6∼10 3 3 14 8
11∼ 61 67 53 64

ence on occurrence distributions between all portions and
high confidence postions. This is the reason why unsuper-
vised adaptation works well like supervised adaptation.

6. Conclusions

In this paper, we proposed the unsupervised speaker adap-
tation method for acoustic models. The speaker adapted
acoustic models using labels from only the high confidence
portions of a speech transcription remarkably improves the
recognition performance, which is almost the same perfor-
mance as the one when supervised adaptation is used.

In future work, we intend not only adapt acoustic mod-
els, but also language models using the high confidence por-
tions.
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