
Chunking and Dependency Analysis of

Japanese Compound Functional Expressions
by Machine Learning

Takehito Utsuro1, Takao Shime2, Masatoshi Tsuchiya3,
Suguru Matsuyoshi4, and Satoshi Sato4

1 Graduate School of Systems and Information Engineering, University of Tsukuba,
1-1-1, Tennodai, Tsukuba, 305-8573, JAPAN

2 NEC Corporation, JAPAN
3 Computer Center, Toyohashi University of Technology,

Tenpaku-cho, Toyohashi, 441–8580, JAPAN
4 Graduate School of Engineering, Nagoya University,

Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract. This paper proposes an approach of processing Japanese
compound functional expressions by identifying them and analyzing their
dependency relations through a machine learning technique. The results
of experimental evaluation shows that, the dependency analysis model
applied to the results of identifying compound functional expressions sig-
nificantly outperforms the one applied to the results without identifying
compound functional expressions.

1 Introduction

In the Japanese language, recognition and semantic interpretation of compound
functional expressions are difficult because it often happens that one compound
expression may have both a literal (in other words, compositional) content word
usage and a non-literal (in other words, non-compositional) functional usage.
For example, Table 1 shows two example sentences of a compound expression
“ni tsuite”, which consists of a post-positional particle “ni”, and a conjugated
form “tsuite” of a verb “tsuku”. In the sentence (A), the compound expression
functions as a case-marking particle and has a non-compositional functional
meaning “about”. On the other hand, in the sentence (B), the expression simply
corresponds to a literal concatenation of the usages of the constituents: the post-
positional particle “ni” and the verb “tsuite”, and has a content word meaning
“follow”. When considering machine translation of those Japanese sentences into
English, it is necessary to precisely judge the usage of the compound expression
“ni tsuite”.

There exist widely-used Japanese text processing tools, i.e., pairs of a mor-
phological analysis tool and a subsequent parsing tool, such as JUMAN1+ KNP2

1 http://nlp.kuee.kyoto-u.ac.jp/nl-resource/juman-e.html
2 http://nlp.kuee.kyoto-u.ac.jp/nl-resource/knp-e.html

Table 1. Translation Selection of a Japanese Compound Expression “ni tsuite”

watashi ha kare ni tsuite hanashita
(A) (I) (TOP) (he) (about) (talked)

(I talked about him.)

watashi ha kare ni tsuite hashitta
(B) (I) (TOP) (he) (ACC) (follow) (ran)

(I ran following him.)

Correct English Translation:
(As a means of solving the problem, USA recommended the activity of OSCE in which Russia participates.)

(1) Correct Dependency Relation by Identifying Compound Functional Expression: “ ”
with a Case Marking Particle Usage.

(2) Incorrect Dependency Relation without Identifying Compound Functional Expression: “ ”,
which Literally Consists of a Post-positional Particle “ ” (with) and a Conjugation Form “ ”
of a Verb “ ” (do).

USA-TOP as a means for solution Russia-NOM also participate in of OSCE activity-ACC recommendedUSA-TOP as a means for solution Russia-NOM also participate in of OSCE activity-ACC recommended

USA-TOP with a means for Russia-NOM also participate in of OSCE activity-ACC recommended
solution

USA-TOP with a means for Russia-NOM also participate in of OSCE activity-ACC recommended
solution

Fig. 1. Example of Improving Dependency Analysis of Compound Functional Expres-
sions by Identifying them before Dependency Analysis

and ChaSen3+ CaboCha4. However, they process those compound expressions
only partially, in that their morphological analysis dictionaries list only limited
number of compound expressions. Furthermore, even if certain expressions are
listed in a morphological analysis dictionary, those existing tools often fail in re-
solving the ambiguities of their usages, such as those in Table 1. This is mainly
because the framework of those existing tools is not designed so as to resolve
such ambiguities of compound (possibly functional) expressions by carefully con-
sidering the context of those expressions.

Actually, as a first step of studying computational processing of compound
functional expressions, we start with 125 major functional expressions which
have non-compositional usages [4], as well as their variants (337 expressions in
total). Out of those 337 expressions, 111 have both a content word usage and

3 http://chasen.naist.jp/hiki/ChaSen/
4 http://chasen.org/˜taku/software/cabocha/

(As a means of solving the
problem, USA recommended the
activity of OSCE in which Russia
participates.)

(solution)

(means)

(with)

(do)

(and)

(solution)

(means)

(as)

(solution)

(means)

(as)

morphological
analysis

by ChaSen
(solution)

(means)

(with)

(do)

(and)

compound
functional

expression

Identifying
compound
functional
expression

chunking

bunsetsu
segmentation

&
dependency

analysis

bunsetsu
segment

dependency
relation

(As a means of solving the
problem, USA recommended the
activity of OSCE in which Russia
participates.)

(solution)

(means)

(with)

(do)

(and)

(solution)

(means)

(with)

(do)

(and)

(solution)

(means)

(as)

(solution)

(means)

(as)

(solution)

(means)

(as)

(solution)

(means)

(as)

morphological
analysis

by ChaSen
(solution)

(means)

(with)

(do)

(and)

compound
functional

expression

(solution)

(means)

(with)

(do)

(and)

(solution)

(means)

(with)

(do)

(and)

compound
functional

expression

Identifying
compound
functional
expression

chunking

bunsetsu
segmentation

&
dependency

analysis

bunsetsu
segment

dependency
relation

Fig. 2. Overall Flow of Processing Compound Functional Expressions in a Japanese
Sentence

a functional usage5. However, the pair of JUMAN+KNP is capable of distin-
guishing the two usages only for 43 of the 111 expressions, and the pair of
ChaSen+CaboCha only for 40 of those 111 expressions. Furthermore, the fail-
ure in distinguishing the two usages may cause errors of syntactic analysis. For
example, Figure 1 shows an example of improving dependency analysis of com-
pound functional expressions by identifying them before dependency analysis.
Here, Japanese dependency structure is usually defined in terms of the relation-
ship between phrasal units called bunsetsu segments (hereafter “bunsetsus”). A
bunsetsu consists of one or more content words following zero or any number
of functional words. In Figure 1, (1) gives an example of identifying a correct
modifiee of the bunsetsu segment including a Japanese compound functional ex-
pression “to-shite (as)”, by appropriately detecting the compound functional ex-
pression before dependency analysis. On the other hand, (2) of Figure 1 gives an
example of incorrectly indicating an erroneous modifiee of the bunsetsu “shite”,
which actually happens if we do not identify the compound functional expression
“to-shite (as)” before dependency analysis of this sentence.

Considering such a situation, it is necessary to develop a tool which properly
recognizes and semantically interprets Japanese compound functional expres-
sions. This paper proposes an approach of processing Japanese compound func-
tional expressions by identifying them and analyzing their dependency relations
through a machine learning technique. The overall flow of processing compound
functional expressions in a Japanese sentence is illustrated in Figure 2. First of
all, we assume a sequence of morphemes obtained by a variant of ChaSen with
all the compound functional expressions removed from its outputs, as an input
to our procedure of identifying compound functional expressions and analyzing

5 In this paper, we take an approach of regarding each of those variants as a fixed ex-
pression, rather than a semi-fixed expression or a syntactically-flexible expression [5].

their dependency relations. We formalize the task of identifying Japanese com-
pound functional expressions in a text as a machine learning based chunking
problem [7]. We employ the technique of Support Vector Machines (SVMs) [9]
as the machine learning technique, which has been successfully applied to var-
ious natural language processing tasks including chunking tasks such as phrase
chunking [1] and named entity chunking. Next, against the results of identifying
compound functional expressions, we apply the method of dependency analysis
based on the cascaded chunking model [2].

2 Chunking Compound Functional Expressions by SVMs

This section describes details of formalizing the chunking task using SVMs. In
this paper, we use an SVMs-based chunking tool YamCha6 [1]. In the SVMs-
based chunking framework, SVMs are used as classifiers for assigning labels for
representing chunks to each token. In our task of chunking Japanese compound
functional expressions, each sentence is represented as a sequence of morphemes,
where a morpheme is regarded as a token.

Given a candidate expression, we classify the usages of the expression into two
classes: functional and content. Accordingly, we distinguish the chunks of the two
types: the functional type chunk and the content type chunk. For representing
proper chunks, we employ IOB2 representation [1]. As for extending SVMs to
multi-class classifiers, we employ the pairwise method.

For the feature sets for training/testing of SVMs, we use the information
available in the surrounding context, such as the morphemes, their parts-of-
speech tags, as well as the chunk labels. More precisely, suppose that we identify
the chunk label ci for the i-th morpheme:

−→ Parsing Direction −→
Morpheme mi−2 mi−1 mi mi+1 mi+2

Feature set at a position Fi−2 Fi−1 Fi Fi+1 Fi+2

Chunk label ci−2 ci−1 ci

Here, mi is the morpheme appearing at i-th position, Fi is the feature set
at i-th position, and ci is the chunk label for i-th morpheme. Roughly speaking,
when identifying the chunk label ci for the i-th morpheme, we use the feature
sets Fi−2, Fi−1, Fi, Fi+1, Fi+2 at the positions i− 2, i− 1, i, i + 1, i + 2, as well
as the preceding two chunk labels ci−2 and ci−1. The detailed definition of the
feature set Fi at i-th position is given in [7], which mainly consists of morphemes
as well as information on the candidate compound functional expression at i-th
position.

6 http://chasen.org/˜taku/software/yamcha/

3 Coping with Compound Functional Expressions in
Statistical Dependency Analysis

In general, dependency relations of a Japanese sentence satisfies the following
two constraints:

1. Japanese is a head-final language. Thus, except for the rightmost one, each
bunsetsu segment modifies exactly one bunsetsu segment among those ap-
pearing to its right.

2. Dependencies do not cross one another.

As the framework of statistical dependency analysis of Japanese sentences, we
employ the method of dependency analysis based on the cascaded chunking
model [2]. Unlike probabilistic dependency analysis models of Japanese, the cas-
caded chunking model of [2] does not require the probabilities of dependencies
and parses a sentence deterministically.

Bunsetsu Representation As we show in Figure 2, a compound functional
expression is identified as a sequence of several morphemes and then chunked
into one morpheme. The result of this identification process is then transformed
into the sequence of bunsetsu segments. Finally, to this modified sequence of
bunsetsu segments, the method of dependency analysis based on the cascaded
chunking model is applied. Here, when chunking a sequence of several morphemes
constituting a compound functional expression, the following two cases may
exist:

(A) As in the case of the example (A) in Table 1, the two morphemes constituting
a compound functional expression “ni tsuite” overlaps the boundary of two
bunsetsu segments. In such a case, when chunking the two morphemes into
one morpheme corresponding to a compound functional expression, those
two bunsetsu segments are concatenated into one bunsetsu segment.

kare ni
(he)

tsuite
=⇒ kare ni-tsuite

(he) (about)
(B) As we show below, a compound functional expression “koto ga aru” overlaps

the boundary of two bunsetsu segments, though the two bunsetsu segments
concatenating into one bunsetsu segment does not include content words. In
such a case, its immediate left bunsetsu segment, which corresponds to the
content word part of “koto ga aru”, has to be concatenated into the one of
the compound functional expression “koto ga aru”.

itt ta
(went)

koto ga aru
=⇒ itt ta koto-ga-aru

(have been ∼)

Next, to the compound functional expression, we assign one of the four gram-
matical function types (case-marking particle, conjunctive particle, adnominal
particle, and auxiliary verb types) as its POS tag. For example, the compound
functional expression “ni tsuite” in (A) above is assigned the grammatical func-
tion type “case-marking particle type”, while “koto ga aru” in (B) is assigned
“auxiliary verb type”.

Table 2. Statistics of Data Sets

Usages # of
functional content total sentences

for chunker
training

1918 1165 3083 2429

Kyoto text corpus 5744 1959 7703 38400

Feature Representation As features of dependency analysis, we simply use
those of the Japanese dependency analyzer based on the cascaded chunking
model, namely, the publicly available version of CaboCha [2]. In CaboCha, for
the pair of modifier/modifiee bunsetsu segments, head words and their parts-of-
speech tags, inflection-types/forms, functional words and their parts-of-speech
tags, inflection-types/forms, inflection forms of the words that appear at the
end of bunsetsu segments are used as features. As for features between modi-
fier/modifiee bunsetsu segments, the distance of modifier/modifiee bunsetsu seg-
ments, existence of case-particles, brackets, quotation-marks, and punctuation-
marks are used.

The modifications of the busetsu representations in the previous section fi-
nally cause differences in the feature representations of CaboCha. For example,
let us compare the feature representations of the modifier bunsetsu segments
in (1) and (2) of Figure 1. In (1), the modifier bunsetsu segment is “kaiketsu-
shudan-to-shite (as a means for solution)” which has the compound functional
expression “to-shite” in its functional word part. On the other hand, in (2), the
modifier bunsetsu segment is “shite”, which corresponds to the literal verb usage
of a part of the compound functional expression “to-shite”. In the final feature
representations below, this difference causes the following differences in head
words, functional words, and POS of the modifier bunsetsu segments:

(1) of Figure 1 (2) of Figure 1
head word shudan (means) suru (do)

functional word to-shite (as) te (and)
POS case-marking particle - conjunctive particle

compound functional expression

4 Experimental Evaluation

4.1 Training/Test Data Sets

In the experimental evaluation, we focus on 59 expressions which have balanced
distribution of their usages in the newspaper text corpus and are among the most
difficult ones in terms of their identification in a text. Here, we assume that we
can similarly train chunkers of compound functional expressions other than the

Table 3. Evaluation Results of Chunking Compound Functional Expressions (%)

Identifying
functional chunks

Acc. of classifying
functional / content

Prec. Rec. Fβ=1 chunks

majority (= functional) 74.6 100 85.5 74.6
Juman/KNP 85.8 40.5 55.0 58.4
ChaSen/CaboCha 85.2 26.7 40.6 51.1

SVM 91.4 94.6 92.9 89.3

Table 4. Accuracies of Identifying Modifier(s)/Modifiee of Compound Functional Ex-
pressions (%)

modifier modifiee

baselines CaboCha (w/o FE) 72.5 88.0
CaboCha (public) 73.9 87.6

chunker + CaboCha (proposed) 74.0 88.0
reference + CaboCha (proposed) 74.4 88.1

selected 59 expressions. For the training of chunking compound functional ex-
pressions, we collected 2,429 example sentences from 1995 Mainichi newspaper
text corpus. For the testing of chunking compound functional expressions, as
well as training/testing of learning dependencies of compound functional ex-
pressions, we used manually parsed sentences of Kyoto text corpus [3], that are
38,400 sentences selected from 1995 Mainichi newspaper text. To those data sets,
we manually annotate usage labels of the 59 compound functional expressions
(details in Table 2).

4.2 Chunking

As we show in Table 3, performance of our SVMs-based chunkers as well as
several baselines including existing Japanese text processing tools is evaluated
in terms of precision/recall/Fβ=1 of identifying functional chunks. Performance
is evaluated also in terms of accuracy of classifying detected candidate expres-
sions into functional/content chunks. Among those baselines, “majority (= func-
tional)” always assigns functional usage to the detected candidate expressions.
Our SVMs-based chunker significantly outperforms those baselines. Some of the
errors should be recovered by simply introducing semantic categories of nouns
as features.

4.3 Analyzing Dependency Relations

Finally, we evaluate the accuracies of judging dependency relations of compound
functional expressions by the variant of CaboCha trained with Kyoto text cor-

pus annotated with usage labels of compound functional expressions. This per-
formance is measured through 10-fold cross validation with the modified version
of Kyoto text corpus. Accuracies of identifying modifier(s)/modifiee of com-
pound functional expressions are measured as in Table 4. Here, “CaboCha (w/o
FE)” denotes a baseline variant of CaboCha, with all the compound functional
expressions removed from its outputs, while “CaoboCha (public)” denotes the
publicly available version of CaboCha, which have some portion of the com-
pound functional expressions included in its outputs. For the modifier accuracy,
the difference of “chunker + CaboCha (proposed)” and “CaboCha (w/o FE)” is
statistically significant at a level of 0.05. Detailed discussions on the evaluation
results are in [8].

5 Concluding Remarks

This paper proposed an approach of processing Japanese compound functional
expressions by identifying them and analyzing their dependency relations through
a machine learning technique. The proposed framework has advantages over an
approach based on manually created rules such as the one in [6], in that it re-
quires considerable human effort to manually create and maintain those rules.
Future works include the issue of implementing chunkers and dependency analyz-
ers which incorporate much larger number of compound functional expressions
with training corpus of limited size.

References

1. T. Kudo and Y. Matsumoto. Chunking with support vector machines. In Proc. 2nd
NAACL, pages 192–199, 2001.

2. T. Kudo and Y. Matsumoto. Japanese dependency analyisis using cascaded chunk-
ing. In Proc. 6th CoNLL, pages 63–69, 2002.

3. S. Kurohashi and M. Nagao. Building a Japanese parsed corpus while improving
the parsing system. In Proc. 1st LREC, pages 719–724, 1998.

4. National Language Research Institute. Gendaigo Hukugouji Youreishu. 2001. (in
Japanese).

5. I. Sag, T. Baldwin, F. Bond, A. Copestake, and D. Flickinger. Multiword expres-
sions: A pain in the neck for NLP. In Proc. 3rd CICLING, pages 1–15, 2002.

6. K. Shudo, T. Tanabe, M. Takahashi, and K. Yoshimura. MWEs as non-propositional
content indicators. In Proc. 2nd ACL Workshop on Multiword Expressions: Inte-
grating Processing, pages 32–39, 2004.

7. M. Tsuchiya, T. Shime, T. Takagi, T. Utsuro, K. Uchimoto, S. Matsuyoshi, S. Sato,
and S. Nakagawa. Chunking Japanese compound functional expressions by machine
learning. In Proc. Workshop on Multi-Word-Expressions in a Multilingual Context,
pages 25–32, 2006.

8. T. Utsuro, T. Shime, M. Tsuchiya, S. Matsuyoshi, and S. Sato. Learning dependency
relations of Japanese compound functional expressions. In Proc. Workshop on A
Broader Perspective on Multiword Expressions (ACL-2007 Workshop), 2007.

9. V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

